Self-Organizing Neural Networks : Recent Advances and Applications (Studies in Fuzziness and Soft Computing)

個数:

Self-Organizing Neural Networks : Recent Advances and Applications (Studies in Fuzziness and Soft Computing)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 278 p.
  • 言語 ENG
  • 商品コード 9783662003435
  • DDC分類 004.0151

Full Description

The Self-Organizing Map (SOM) is one of the most frequently used architectures for unsupervised artificial neural networks. Introduced by Teuvo Kohonen in the 1980s, SOMs have been developed as a very powerful method for visualization and unsupervised classification tasks by an active and innovative community of interna- tional researchers. A number of extensions and modifications have been developed during the last two decades. The reason is surely not that the original algorithm was imperfect or inad- equate. It is rather the universal applicability and easy handling of the SOM. Com- pared to many other network paradigms, only a few parameters need to be arranged and thus also for a beginner the network leads to useful and reliable results. Never- theless there is scope for improvements and sophisticated new developments as this book impressively demonstrates. The number of published applications utilizing the SOM appears to be unending. As the title of this book indicates, the reader will benefit from some of the latest the- oretical developments and will become acquainted with a number of challenging real-world applications.
Our aim in producing this book has been to provide an up- to-date treatment of the field of self-organizing neural networks, which will be ac- cessible to researchers, practitioners and graduated students from diverse disciplines in academics and industry. We are very grateful to the father of the SOMs, Professor Teuvo Kohonen for sup- porting this book and contributing the first chapter.

Contents

Overture.- Measures for the Organization of Self-Organizing Maps.- Unsupervised Learning and Self-Organization in Networks of Spiking Neurons.- Generative Probability Density Model in the Self-Organizing Map.- Growing Multi-Dimensional Self-Organizing Maps for Motion Detection.- Extensions and Modifications of the Kohonen-SOM and Applications in Remote Sensing Image Analysis.- Modeling Speech Processing and Recognition in the Auditory System Using the Multilevel Hypermap Architecture.- Algorithms for the Visualization of Large and Multivariate Data Sets.- Self-Organizing Maps and Financial Forecasting: an Application.- Unsupervised and Supervised Learning in Radial-Basis-Function Networks.- Parallel Implementations of Self-Organizing Maps.

最近チェックした商品