Finite Difference Methods on Irregular Networks (International Series of Numerical Mathematics .82) (2012. 206 S. 206 p. 244 mm)

個数:

Finite Difference Methods on Irregular Networks (International Series of Numerical Mathematics .82) (2012. 206 S. 206 p. 244 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 212 p.
  • 言語 ENG
  • 商品コード 9783034871983

Full Description

The finite difference and finite element methods are powerful tools for the approximate solution of differential equations governing diverse physical phenomena, and there is extensive literature on these discre­ tization methods. In the last two decades, some extensions of the finite difference method to irregular networks have been described and applied to solving boundary value problems in science and engineering. For instance, "box integration methods" have been widely used in electro­ nics. There are several papers on this topic, but a comprehensive study of these methods does not seem to have been attempted. The purpose of this book is to provide a systematic treatment of a generalized finite difference method on irregular networks for solving numerically elliptic boundary value problems. Thus, several disadvan­ tages of the classical finite difference method can be removed, irregular networks of triangles known from the finite element method can be applied, and advantageous properties of the finite difference approxima­ tions will be obtained. The book is written for advanced undergraduates and graduates in the area of numerical analysis as well as for mathematically inclined workers in engineering and science. In preparing the material for this book, the author has greatly benefited from discussions and collaboration with many colleagues who are concerned with finite difference or (and) finite element methods.

Contents

1. Introduction.- 1.1. Preliminary remarks.- 1.2. Scope of monograph.- 1.3. Plan of monograph, comments.- 2. Boundary Value Problems and Irregular Networks.- 2.1. A class of elliptic problems.- 2.2. Irregular networks.- 2.3. Secondary networks and boxes.- 3. Construction of Finite Difference Approximations.- 3.1. The principle of approximation.- 3.2. Finite difference schemes via method (PB).- 3.3. Finite difference schemes via method (MD).- 4. Analytical and Matrix Properties of the Difference Operators Ah.- 4.1. General remarks and notations.- 4.2. Monotonicity and other matrix properties.- 4.3. Scalar products, norms and a trace theorem.- 4.4. Green's formula, inequalities of Friedrichs-Poincaré- type and the positive definiteness of Ah.- 4.5. A priori estimates for Ah using the W12- and C-norm.- 5. Error Estimates and Convergence.- 5.1. Error splitting and approaches to the error estimation.- 5.2. The error æ of the principal part of PB-operators.- 5.3. The error æ of the principal part of MD-operators.- 5.4. The error ?N for PB- MD-schemes.- 5.5. Convergence for W22(?)-solutions.- 6. Finite Difference Schemes for Nonsymmetric Problems.- 6.1. Construction of finite difference approximations.- 6.2. Properties of the difference operators $${\text{A}}_{{\text{h}}}^{{\text{b}}}$$.- 6.3. The error convection term.- 7. Concluding Remarks.- Appendices.- 1. Appendix DI: Relations of Differential and Integral calculus, norms.- 2. Appendix ES: Estimation of functionals on Sobolev spaces.- 3. Appendix EX: Extension of functions.- 4. Appendix GE: Some relations of geometry.- 5. Appendix IM: Imbedding and trace theorems.- 6. Appendix TR: Affine transformations of coordinates and functional.- References.- List of Figures.- Abbreviations.- Notations.

最近チェックした商品