MLOps with Red Hat OpenShift : A cloud-native approach to machine learning operations

個数:

MLOps with Red Hat OpenShift : A cloud-native approach to machine learning operations

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 238 p.
  • 言語 ENG
  • 商品コード 9781805120230
  • DDC分類 006.31

Full Description

Build and manage MLOps pipelines with this practical guide to using Red Hat OpenShift Data Science, unleashing the power of machine learning workflows

Key Features

Grasp MLOps and machine learning project lifecycle through concept introductions
Get hands on with provisioning and configuring Red Hat OpenShift Data Science
Explore model training, deployment, and MLOps pipeline building with step-by-step instructions
Purchase of the print or Kindle book includes a free PDF eBook

Book DescriptionMLOps with OpenShift offers practical insights for implementing MLOps workflows on the dynamic OpenShift platform. As organizations worldwide seek to harness the power of machine learning operations, this book lays the foundation for your MLOps success. Starting with an exploration of key MLOps concepts, including data preparation, model training, and deployment, you'll prepare to unleash OpenShift capabilities, kicking off with a primer on containers, pods, operators, and more.
With the groundwork in place, you'll be guided to MLOps workflows, uncovering the applications of popular machine learning frameworks for training and testing models on the platform.
As you advance through the chapters, you'll focus on the open-source data science and machine learning platform, Red Hat OpenShift Data Science, and its partner components, such as Pachyderm and Intel OpenVino, to understand their role in building and managing data pipelines, as well as deploying and monitoring machine learning models.
Armed with this comprehensive knowledge, you'll be able to implement MLOps workflows on the OpenShift platform proficiently.What you will learn

Build a solid foundation in key MLOps concepts and best practices
Explore MLOps workflows, covering model development and training
Implement complete MLOps workflows on the Red Hat OpenShift platform
Build MLOps pipelines for automating model training and deployments
Discover model serving approaches using Seldon and Intel OpenVino
Get to grips with operating data science and machine learning workloads in OpenShift

Who this book is forThis book is for MLOps and DevOps engineers, data architects, and data scientists interested in learning the OpenShift platform. Particularly, developers who want to learn MLOps and its components will find this book useful. Whether you're a machine learning engineer or software developer, this book serves as an essential guide to building scalable and efficient machine learning workflows on the OpenShift platform.

Contents

Table of Contents

Introduction to MLOps and OpenShift
Provisioning an MLOps platform in the Cloud
Building Machine Learning Models
Embedding ML Models into the Applications
Deploying ML Models as a Service
Operating ML workloads
Building a face detector using the Red Hat ML Platform

最近チェックした商品