Stochastic Dynamics for Systems Biology (Chapman & Hall/crc Mathematical Biology Series)

個数:

Stochastic Dynamics for Systems Biology (Chapman & Hall/crc Mathematical Biology Series)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 274 p.
  • 言語 ENG
  • 商品コード 9781466514935
  • DDC分類 570.15192

Full Description

Stochastic Dynamics for Systems Biology is one of the first books to provide a systematic study of the many stochastic models used in systems biology. The book shows how the mathematical models are used as technical tools for simulating biological processes and how the models lead to conceptual insights on the functioning of the cellular processing system. Most of the text should be accessible to scientists with basic knowledge in calculus and probability theory.

The authors illustrate the relevant Markov chain theory using realistic models from systems biology, including signaling and metabolic pathways, phosphorylation processes, genetic switches, and transcription. A central part of the book presents an original and up-to-date treatment of cooperativity. The book defines classical indexes, such as the Hill coefficient, using notions from statistical mechanics. It explains why binding curves often have S-shapes and why cooperative behaviors can lead to ultrasensitive genetic switches. These notions are then used to model transcription rates. Examples cover the phage lambda genetic switch and eukaryotic gene expression.

The book then presents a short course on dynamical systems and describes stochastic aspects of linear noise approximation. This mathematical framework enables the simplification of complex stochastic dynamics using Gaussian processes and nonlinear ODEs. Simple examples illustrate the technique in noise propagation in gene networks and the effects of network structures on multistability and gene expression noise levels. The last chapter provides up-to-date results on stochastic and deterministic mass action kinetics with applications to enzymatic biochemical reactions and metabolic pathways.

Contents

Dynamics of Reaction Networks: Markov Processes: Reaction Networks: Introduction. Continuous-Time Markov Chains. Illustrations from Systems Biology: First-Order Chemical Reaction Networks. Biochemical Pathways. Binding Processes and Transcription Rates. Kinetics of Binding Processes. Transcription Factor Binding at Nucleosomal DNA. Signalling Switches. A Short Course on Dynamical Systems: Differential Equations, Flows, and Vector Fields. Equilibria, Periodic Orbits and Limit Cycles. Linearization. Linear Noise Approximation: Density-Dependent Population Processes and the Linear Noise Approximation. Mass Action Kinetics. Appendix: Self-Regulated Genes. Asymptotic Behavior of the Solutions to Time-Continuous Lyapunov Equations. Bibliography. Index.

最近チェックした商品