Propensity Score Analysis : Fundamentals and Developments

個数:

Propensity Score Analysis : Fundamentals and Developments

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 402 p.
  • 言語 ENG
  • 商品コード 9781462519491
  • DDC分類 519.53

Full Description

This book is designed to help researchers better design and analyze observational data from quasi-experimental studies and improve the validity of research on causal claims. It provides clear guidance on the use of different propensity score analysis (PSA) methods, from the fundamentals to complex, cutting-edge techniques. Experts in the field introduce underlying concepts and current issues and review relevant software programs for PSA. The book addresses the steps in propensity score estimation, including the use of generalized boosted models, how to identify which matching methods work best with specific types of data, and the evaluation of balance results on key background covariates after matching. Also covered are applications of PSA with complex data, working with missing data, controlling for unobserved confounding, and the extension of PSA to prognostic score analysis for causal inference. User-friendly features include statistical program codes and application examples. Data and software code for the examples are available at the companion website (www.guilford.com/pan-materials).

Contents

I. Fundamentals of Propensity Score Analysis
1. Propensity Score Analysis: Concepts and Issues, Wei Pan & Haiyan Bai
2. Overview of Implementing Propensity Score Analysis in Statistical Software, Megan Schuler
II. Propensity Score Estimation, Matching, and Covariate Balance
3. Propensity Score Estimation with Boosted Regression, Lane F. Burgette, Daniel F. McCaffrey, & Beth Ann Griffin
4. Methodological Considerations in Implementing Propensity Score Matching, Haiyan Bai
5. Evaluating Covariate Balance, Cassandra W. Pattanayak
III. Weighting Schemes and Other Strategies for Outcome Analysis after Matching
6. Propensity Score Adjustment Methods, M. H. Clark
7. Propensity Score Analysis with Matching Weights, Liang Li, Tom H. Greene, & Brian C. Sauer
8. Robust Outcome Analysis for Propensity-Matched Designs, Scott F. Kosten, Joseph W. McKean, & Bradley E. Huitema
IV. Propensity Score Analysis on Complex Data
9. Latent Growth Modeling of Longitudinal Data with Propensity-Score-Matched Groups, Walter L. Leite
10. Propensity Score Matching on Multilevel Data, Qiu Wang
11. Propensity Score Analysis with Complex Survey Samples, Debbie L. Hahs-Vaughn
V. Sensitivity Analysis and Extensions Related to Propensity Score Analysis
12. Missing Data in Propensity Scores, Robin Mitra
13. Unobserved Confounding in Propensity Score Analysis, Rolf H. H. Groenwold & Olaf H. Klungel
14. Propensity-Score-Based Sensitivity Analysis, Lingling Li, Changyu Shen, & Xiaochun Li
15. Prognostic Scores in Clustered Settings, Ben Kelcey & Christopher M. Swoboda
Author Index
Subject Index
About the Editors
Contributors

最近チェックした商品