機械学習:トピックと手法<br>Machine Learning : a Concise Introduction (Wiley Series in Probability and Statistics)

個数:
電子版価格
¥13,726
  • 電書あり

機械学習:トピックと手法
Machine Learning : a Concise Introduction (Wiley Series in Probability and Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 352 p.
  • 言語 ENG
  • 商品コード 9781119439196
  • DDC分類 006.31

Full Description

AN INTRODUCTION TO MACHINE LEARNING THAT INCLUDES THE FUNDAMENTAL TECHNIQUES, METHODS, AND APPLICATIONS

PROSE Award Finalist 2019
Association of American Publishers Award for Professional and Scholarly Excellence

Machine Learning: a Concise Introduction offers a comprehensive introduction to the core concepts, approaches, and applications of machine learning. The author—an expert in the field—presents fundamental ideas, terminology, and techniques for solving applied problems in classification, regression, clustering, density estimation, and dimension reduction. The design principles behind the techniques are emphasized, including the bias-variance trade-off and its influence on the design of ensemble methods. Understanding these principles leads to more flexible and successful applications. Machine Learning: a Concise Introduction also includes methods for optimization, risk estimation, and model selection— essential elements of most applied projects. This important resource:



Illustrates many classification methods with a single, running example, highlighting similarities and differences between methods
Presents R source code which shows how to apply and interpret many of the techniques covered
Includes many thoughtful exercises as an integral part of the text, with an appendix of selected solutions
Contains useful information for effectively communicating with clients

A volume in the popular Wiley Series in Probability and Statistics, Machine Learning: a Concise Introduction offers the practical information needed for an understanding of the methods and application of machine learning.

STEVEN W. KNOX holds a Ph.D. in Mathematics from the University of Illinois and an M.S. in Statistics from Carnegie Mellon University. He has over twenty years' experience in using Machine Learning, Statistics, and Mathematics to solve real-world problems. He currently serves as Technical Director of Mathematics Research and Senior Advocate for Data Science at the National Security Agency.

Contents

Preface xi

Organization—How to Use This Book xiii

Acknowledgments xvii

About the Companion Website xix

1 Introduction—Examples from Real Life 1

2 The Problem of Learning 3

2.1 Domain 4

2.2 Range 4

2.3 Data 4

2.4 Loss 6

2.5 Risk 8

2.6 The Reality of the Unknown Function 12

2.7 Training and Selection of Models, and Purposes of Learning 12

2.8 Notation 13

3 Regression 15

3.1 General Framework 16

3.2 Loss 17

3.3 Estimating the Model Parameters 17

3.4 Properties of Fitted Values 19

3.5 Estimating the Variance 22

3.6 A Normality Assumption 23

3.7 Computation 24

3.8 Categorical Features 25

3.9 Feature Transformations, Expansions, and Interactions 27

3.10 Variations in Linear Regression 28

3.11 Nonparametric Regression 32

4 Survey of Classification Techniques 33

4.1 The Bayes Classifier 34

4.2 Introduction to Classifiers 37

4.3 A Running Example 38

4.4 Likelihood Methods 40

4.4.1 Quadratic Discriminant Analysis 41

4.4.2 Linear Discriminant Analysis 43

4.4.3 Gaussian Mixture Models 45

4.4.4 Kernel Density Estimation 47

4.4.5 Histograms 51

4.4.6 The Naive Bayes Classifier 54

4.5 Prototype Methods 54

4.5.1 k-Nearest-Neighbor 55

4.5.2 Condensed k-Nearest-Neighbor 56

4.5.3 Nearest-Cluster 56

4.5.4 Learning Vector Quantization 58

4.6 Logistic Regression 59

4.7 Neural Networks 62

4.7.1 Activation Functions 62

4.7.2 Neurons 64

4.7.3 Neural Networks 65

4.7.4 Logistic Regression and Neural Networks 73

4.8 Classification Trees 74

4.8.1 Classification of Data by Leaves (Terminal Nodes) 74

4.8.2 Impurity of Nodes and Trees 75

4.8.3 Growing Trees 76

4.8.4 Pruning Trees 79

4.8.5 Regression Trees 81

4.9 Support Vector Machines 81

4.9.1 Support Vector Machine Classifiers 81

4.9.2 Kernelization 88

4.9.3 Proximal Support Vector Machine Classifiers 92

4.10 Postscript: Example Problem Revisited 93

5 Bias-Variance Trade-off 97

5.1 Squared-Error Loss 98

5.2 Arbitrary Loss 101

6 Combining Classifiers 107

6.1 Ensembles 107

6.2 Ensemble Design 110

6.3 Bootstrap Aggregation (Bagging) 112

6.4 Bumping 115

6.5 Random Forests 116

6.6 Boosting 118

6.7 Arcing 121

6.8 Stacking and Mixture of Experts 121

7 Risk Estimation and Model Selection 127

7.1 Risk Estimation via Training Data 128

7.2 Risk Estimation via Validation or Test Data 128

7.2.1 Training, Validation, and Test Data 128

7.2.2 Risk Estimation 129

7.2.3 Size of Training, Validation, and Test Sets 130

7.2.4 Testing Hypotheses About Risk 131

7.2.5 Example of Use of Training, Validation, and Test Sets 132

7.3 Cross-Validation 133

7.4 Improvements on Cross-Validation 135

7.5 Out-of-Bag Risk Estimation 137

7.6 Akaike's Information Criterion 138

7.7 Schwartz's Bayesian Information Criterion 138

7.8 Rissanen's Minimum Description Length Criterion 139

7.9 R2 and Adjusted R2 140

7.10 Stepwise Model Selection 141

7.11 Occam's Razor 142

8 Consistency 143

8.1 Convergence of Sequences of Random Variables 144

8.2 Consistency for Parameter Estimation 144

8.3 Consistency for Prediction 145

8.4 There Are Consistent and Universally Consistent Classifiers 145

8.5 Convergence to Asymptopia Is Not Uniform and May Be Slow 147

9 Clustering 149

9.1 Gaussian Mixture Models 150

9.2 k-Means 150

9.3 Clustering by Mode-Hunting in a Density Estimate 151

9.4 Using Classifiers to Cluster 152

9.5 Dissimilarity 153

9.6 k-Medoids 153

9.7 Agglomerative Hierarchical Clustering 154

9.8 Divisive Hierarchical Clustering 155

9.9 How Many Clusters Are There? Interpretation of Clustering 155

9.10 An Impossibility Theorem 157

10 Optimization 159

10.1 Quasi-Newton Methods 160

10.1.1 Newton's Method for Finding Zeros 160

10.1.2 Newton's Method for Optimization 161

10.1.3 Gradient Descent 161

10.1.4 The BFGS Algorithm 162

10.1.5 Modifications to Quasi-Newton Methods 162

10.1.6 Gradients for Logistic Regression and Neural Networks 163

10.2 The Nelder-Mead Algorithm 166

10.3 Simulated Annealing 168

10.4 Genetic Algorithms 168

10.5 Particle Swarm Optimization 169

10.6 General Remarks on Optimization 170

10.6.1 Imperfectly Known Objective Functions 170

10.6.2 Objective Functions Which Are Sums 171

10.6.3 Optimization from Multiple Starting Points 172

10.7 The Expectation-Maximization Algorithm 173

10.7.1 The General Algorithm 173

10.7.2 EM Climbs the Marginal Likelihood of the Observations 173

10.7.3 Example—Fitting a Gaussian Mixture Model Via EM 176

10.7.4 Example—The Expectation Step 177

10.7.5 Example—The Maximization Step 178

11 High-Dimensional Data 179

11.1 The Curse of Dimensionality 180

11.2 Two Running Examples 187

11.2.1 Example 1: Equilateral Simplex 187

11.2.2 Example 2: Text 187

11.3 Reducing Dimension While Preserving Information 190

11.3.1 The Geometry of Means and Covariances of Real Features 190

11.3.2 Principal Component Analysis 192

11.3.3 Working in "Dissimilarity Space" 193

11.3.4 Linear Multidimensional Scaling 195

11.3.5 The Singular Value Decomposition and Low-Rank Approximation 197

11.3.6 Stress-Minimizing Multidimensional Scaling 199

11.3.7 Projection Pursuit 199

11.3.8 Feature Selection 201

11.3.9 Clustering 202

11.3.10 Manifold Learning 202

11.3.11 Autoencoders 205

11.4 Model Regularization 209

11.4.1 Duality and the Geometry of Parameter Penalization 212

11.4.2 Parameter Penalization as Prior Information 213

12 Communication with Clients 217

12.1 Binary Classification and Hypothesis Testing 218

12.2 Terminology for Binary Decisions 219

12.3 ROC Curves 219

12.4 One-Dimensional Measures of Performance 224

12.5 Confusion Matrices 225

12.6 Multiple Testing 226

12.6.1 Control the Familywise Error 226

12.6.2 Control the False Discovery Rate 227

12.7 Expert Systems 228

13 Current Challenges in Machine Learning 231

13.1 Streaming Data 231

13.2 Distributed Data 231

13.3 Semi-supervised Learning 232

13.4 Active Learning 232

13.5 Feature Construction via Deep Neural Networks 233

13.6 Transfer Learning 233

13.7 Interpretability of Complex Models 233

14 R Source Code 235

14.1 Author's Biases 236

14.2 Libraries 236

14.3 The Running Example (Section 4.3) 237

14.4 The Bayes Classifier (Section 4.1) 241

14.5 Quadratic Discriminant Analysis (Section 4.4.1) 243

14.6 Linear Discriminant Analysis (Section 4.4.2) 243

14.7 Gaussian Mixture Models (Section 4.4.3) 244

14.8 Kernel Density Estimation (Section 4.4.4) 245

14.9 Histograms (Section 4.4.5) 248

14.10 The Naive Bayes Classifier (Section 4.4.6) 253

14.11 k-Nearest-Neighbor (Section 4.5.1) 255

14.12 Learning Vector Quantization (Section 4.5.4) 257

14.13 Logistic Regression (Section 4.6) 259

14.14 Neural Networks (Section 4.7) 260

14.15 Classification Trees (Section 4.8) 263

14.16 Support Vector Machines (Section 4.9) 267

14.17 Bootstrap Aggregation (Section 6.3) 272

14.18 Boosting (Section 6.6) 274

14.19 Arcing (Section 6.7) 275

14.20 Random Forests (Section 6.5) 275

A List of Symbols 277

B Solutions to Selected Exercises 279

C Converting Between Normal Parameters and Level-Curve Ellipsoids 299

D Training Data and Fitted Parameters 301

References 305

Index 315