- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
The language of ∞-categories provides an insightful new way of expressing many results in higher-dimensional mathematics but can be challenging for the uninitiated. To explain what exactly an ∞-category is requires various technical models, raising the question of how they might be compared. To overcome this, a model-independent approach is desired, so that theorems proven with any model would apply to them all. This text develops the theory of ∞-categories from first principles in a model-independent fashion using the axiomatic framework of an ∞-cosmos, the universe in which ∞-categories live as objects. An ∞-cosmos is a fertile setting for the formal category theory of ∞-categories, and in this way the foundational proofs in ∞-category theory closely resemble the classical foundations of ordinary category theory. Equipped with exercises and appendices with background material, this first introduction is meant for students and researchers who have a strong foundation in classical 1-category theory.
Contents
Part I. Basic ∞-Category Theory: 1. ∞-Cosmoi and their homotopy 2-categories; 2. Adjunctions, limits, and colimits I; 3. Comma ∞-categories; 4. Adjunctions, limits, and colimits II; 5. Fibrations and Yoneda's lemma; 6. Exotic ∞-cosmoi; Part II. The Calculus of Modules: 7. Two-sided fibrations and modules; 8. The calculus of modules; 9. Formal category theory in a virtual equipment; Part III. Model Independence: 10. Change-of-model functors; 11. Model independence; 12. Applications of model independence.