Advances in High-Order Sensitivity Analysis (Advances in Applied Mathematics)

個数:
  • 予約

Advances in High-Order Sensitivity Analysis (Advances in Applied Mathematics)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 280 p.
  • 言語 ENG
  • 商品コード 9781032752112

Full Description

The high-order sensitivities of model responses with respect to model parameters are notoriously difficult to compute for large-scale models involving many parameters. The neglect of higher-order response sensitivities leads to substantial errors in predicting the moments (expectation, variance, skewness, kurtosis) of the model response's distribution in the phase-space of model parameters. The author expands on his theory of addressing high-order sensitivity analysis.

The mathematical/computational models of physical systems comprise parameters, independent and dependent variables. Since the physical processes themselves are seldom known precisely and since most of the model's parameters stem from experimental procedures that are also subject to imprecision and/or uncertainties, the results predicted by these models are also imprecise, being affected by the uncertainties underlying the respective model.

In the particular case of sensitivity analysis using conventional methods, the number of large-scale computations increases exponentially. For large-scale models involving many parameters, even the first-order sensitivities are computationally very expensive to determine accurately by conventional methods. Furthermore, the "curse of dimensionality" prohibits the accurate computation of higher-order sensitivities by conventional methods.

Other books by the author, all published by CRC Press, include Sensitivity & Uncertainty Analysis, Volume: Theory (2003), and Sensitivity and Uncertainty Analysis, Volume II: Applications to Large-Scale Systems (Cacuci, et al., 2005), Computational Methods for Data Evaluation and Assimilation (Cacuci, et al.,2014). The Second-Order Adjoint Sensitivity Analysis Methodology (2018), and Advances in High-Order Predictive Modeling Methodologies and Illustrative Problems (2025).

Contents

1. Motivation for Computing High-Order Sensitivities of Model Responses to Model Parameters 2. The 1st-FASAM-N Methodology for Nonlinear Systems 3. The 2nd-FASAM-N Methodology for Nonlinear Systems 4. The Mathematical Framework of the nth-Order Feature/Function Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (nth-FASAM-N) 5. Illustrative Application of the nth-FASAM-N Methodology to the Nordheim-Fuchs Reactor Safety Model 6. The nth-Order Features Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (nth-FASAM-L) 7. Illustrative Application of the nth-FASAM-L

最近チェックした商品