Advances and Applications of Machine Learning in Fluid Flow Problems (Advances in Digital Technologies for Smart Applications)

個数:
  • 予約

Advances and Applications of Machine Learning in Fluid Flow Problems (Advances in Digital Technologies for Smart Applications)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 272 p.
  • 言語 ENG
  • 商品コード 9781032747392

Full Description

The rapid growth of machine learning in recent years has made it a popular tool for data analysis, modeling, and prediction. As more data is generated from fluid flow simulations and experiments, the use of machine learning algorithms has become essential in making sense of it all. Advances and Applications of Machine Learning in Fluid Flow Problems provides insight into the effective use of machine learning in fluid flow and its potential impact on the field. It examines the application of machine learning techniques in various fluid flow problems, including but not limited to turbulent flow, multiphase flow, complex geometries, flow control, turbulence modeling, particle-fluid interactions, numerical simulations, data-driven modeling, flow in porous media, oil/gas reservoir simulation, permeability prediction, and more. It serves as a useful tool for a wide range of readers in the professional, industrial, and academic sectors.

Covers both the theories and practical applications of machine learning in fluid flow problems, making the book a unique and valuable resource for professionals and researchers in the field.
Provides a comprehensive examination of the application of machine learning for all aspects of fluid flow problems.

Contents

Table of Contents

Biography

List of figures

List of tables

Part I Introduction

Chapter 1Overview of Machine Learning

Chapter 2 Challenges, Limitations, and Recommendations

Part II ML for Turbulent Flows

Chapter 3 PIV, CFD and ML for Turbulent Jet

Chapter 4 Turbulent Jets Using Time Series

Chapter 5 Machine Learning for Permeability

Chapter 6 Hybrid Forecasting for Petroleum Reservoir

Chapter 7 PINN for Second-Order Porous Medium

Part IV ML for Hydrogen Energy

Chapter 8 Hydrogen Migration in Porous Media

Chapter 9 Hydrogen Leakage

Part V ML for Wind Energy

Chapter 10 Wind Farm Optimization and ML

最近チェックした商品