Long Memory Time Series Analysis

個数:
  • 予約

Long Memory Time Series Analysis

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 170 p.
  • 言語 ENG
  • 商品コード 9781032626963

Full Description

Long Memory Time Series Analysis is a comprehensive text which covers long memory time series with the different long memory time series discussed. The authors cover modelling and forecasting using various time series, deploying traditional and machine learning methodologies. The reader also learns recent research trends, such as state space modelling of generalized long memory time series and the use of the tsfGRNN machine learning tool in R. The book starts from autoregressive (AR) and moving average (MA) processes to descriptions of the autoregressive integrated moving average (ARMA) time series, the ARIMA model, and the autoregressive fractionally integrated moving average (ARFIMA) process. The differences of short, intermediate, and long memory processes are highlighted. The reader will gain knowledge of elementary time series through this extensive coverage.

The book discusses generalized Gegenbauer autoregressive moving averages (GARMA) and seasonal GARMA long memory time series and state space modelling of generalized and seasonal GARMA. The extensions of the short and long memory models driven by generalised autoregressive conditionally heteroskedastic (GARCH) errors are also presented. The extensive range of problems linked with generalized Gegenbauer long memory time series are presented to reinforce the reader's conceptual learning. Coverage on the use of time series with high frequency data captured through the latest technological innovations is an invaluable resource to the reader. This learning is done through examples of time series application case studies in medicine, biology, and finance.

The core audience is students attending advanced studies in time series. The book can also be used by researchers and data scientists involved in utilizing time series analysis in a modern context.

Contents

1. Introduction to AR, MA Time Series, Autocorrelation, Partial Autocorrelation, Spectral Density. 2. ARMA Process and Box-Jenkins Model. 3. Integer Differencing and ARIMA Process with White Noise. 4. Fractional Differencing and ARFIMA Process with White Noise. 5. Short, Intermediate, and Long Memory Properties of Time Series. 6. Standard Long Memory and State Space Modeling of ARFIMA Process with White Noise. 7. State Space Modeling of GARMA Processes with Generalized Long Memory. 8. Nonlinear and Non Stationary Time Series. 9. An Introduction to Nonparametric Long Memory Time Series. 10. ARMA, ARIMA, ARFIMA, and GARMA Models with GARCH Errors. 11. Enhancing Time Series Analysis with Machine Learning, High-Frequency Data, and Applications in Medicine and Biology.

最近チェックした商品