Dose-exposure-response Modeling : Methods and Practical Implementation (Chapman & Hall/crc Biostatistics Series) (2ND)

個数:
  • 予約

Dose-exposure-response Modeling : Methods and Practical Implementation (Chapman & Hall/crc Biostatistics Series) (2ND)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 384 p.
  • 言語 ENG
  • 商品コード 9781032596259

Full Description

This thoroughly revised and updated new edition reflects the progress that has been made in dose-exposure-response (DER) modelling. As the title suggests, the new edition covers more topics on dose and dose adjustment. A large part of the book has been rewritten, including an updated Bayesian analysis and modeling chapter with new materials on approximate Bayesian modeling with misspecified models, Bayesian bootstrap for the "cut-the-feedback" approach and meta-regression with Stan codes for implementation. Two new chapters in this edition include one on causal DER modeling, with an introduction to the concept of causal DER relationship, approaches such as the generalized propensity score and instrumental/control function approaches for adjustment for observed and unobserved confounders, and Bayesian causal DER modeling. Another new chapter is dedicated to learning DER relationships with the concept and methods of machine learning, including applications to adaptive dose finding trials by bandits, contextual bandits and Thompson sampling with Bayesian bootstrap, adaptive control for tracking using a dynamic model with an application for individual warfarin dosing. The new appendix contains non-standard materials used in the book.

Applied statisticians and modelers can find details on how to implement new approaches while researchers can find topics for or applications of their work. In addition, students can see how complicated methodology and models are applied to practical situations.

Key Features:

· Provides SAS, R and Stan codes that will enable readers to test the approaches in their own scenarios.

· Gives a systematic treatment of concepts and methodology.

· Helps with understanding concepts and evaluating the performance of new methods, particularly those in Chapters 7, 8 and 9.

· Includes a large amount of R codes for methods introduced in the new materials in chapters on Bayesian analyses, causal inference, and dose-adjustment.

· Includes simulation to show how some complex methods such as generalized propensity score adjustment and adaptive dose adjustment can be implemented with simple codes.

Contents

1 Introduction 2 Basic exposure and exposure-response models 3 Dose-exposure and exposure-response models for longitudinal data 4 Sequential and simultaneous dose-exposure-response modeling 5 Exposure-risk modeling for time-to-event data 6 Modeling dynamic dose-exposure-response relationship 7 Bayesian dose-exposure-response modeling 8 Causal dose-exposure-response analysis 9 Learning dose-exposure-response relationships: dose allocation and optimization 10 Appendices Index

最近チェックした商品