Micromechatronics : Modeling, Analysis, and Design with Matlab (Nano- and Microscience, Engineering, Technology and Medicine)

Micromechatronics : Modeling, Analysis, and Design with Matlab (Nano- and Microscience, Engineering, Technology and Medicine)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Hardcover:ハードカバー版/ページ数 744 p.
  • 言語 ENG
  • 商品コード 9780849315930
  • DDC分類 621

Full Description


Mechatronics - the breakthrough concept in the design and analysis of electromechanical systems and the unified cornerstone of modern engineering. Microsystems - the future of technology, but fraught with the challenges inherent at small scales. Apply the power and versatility of mechatronics to microsystems and we find a way to attack, integrate, and solve a great variety of emerging engineering problems. "Micromechatronics: Modelling, Analysis, and Design with MATLAB" synthesizes traditional engineering topics and the latest technologies to build a solid understanding of the engineering underpinnings of integrated technologies and develop the modern picture of microelectromechanical engineering.Emphasizing the modeling, simulation, analysis, design, and implementation of high-performance mini - and microscale electromechanical systems, the authors develop the rigorous theory, demonstrate the application of theoretical results, and explore state-of-the-art technologies. MATLAB is used throughout this book to illustrate practical examples and help readers master this powerful, industry-standard software. The application of mechatronics, particularly micromechatronics, is an endless frontier. All engineers will soon need a working knowledge of the theoretical bases and their practical applications. Comprehensive in coverage and global in perspective, "Micromechatronics: Modeling, Analysis, and Design with MATLAB" helps build the background you need to design and analyze state-of-the-art systems and contribute to further advancements.

Table of Contents

Chapter 1 Introduction
1.1 Mechatronic and Micromechatronic Systems 1 (1)
1.2 Mechatronics Definition 2 (2)
1.3 Design of Mechatronic and 4 (5)
Micromechatronic systems
1.4 Mechatronics: Emerging Trends in 9 (1)
Engineering, Science, and Technology
1.5 Mechatronics Perspectives 10 (3)
Chapter 2 Modeling of Mechatronic systems
2.1 Mathematical Models and Mechatronic 13 (2)
System Dynamics
2.2 Electromagnetics and Electromechanics 15 (19)
2.2.1 Newtonian Mechanics for Translational 15 (2)
Motion
Example 2.1 15 (2)
2.2.2 Newtonian Mechanics for Rotational 17 (1)
Motion
Example 2.2 17 (1)
2.2.3 Lagrange Equations of Motion 18 (2)
Example 2.3 18 (2)
2.2.4 Kirchhoff's Laws 20 (45)
Example 2.4 20 (1)
Example 2.5 21 (1)
Example 2.6 22 (6)
Example 2.7 28 (2)
Example 2.8 30 (2)
Example 2.9 32 (2)
2.3 Electromagnetics Fundamentals and 34 (11)
Applications
Example 2.10 39 (2)
Example 2.11 41 (2)
Example 2.12 43 (2)
2.4 Maxwell's Equations 45 (8)
References 53 (2)
Chapter 3 Control of Mechatronic Systems
3.1 Continuous-Time and Discrete-Time 55 (4)
Mechatronic Systems
3.2 Multivariable Continuous- and 59 (6)
Discrete-Time Mechatronic Systems Modeled
Using Linear Differential and Difference
Equations: Basic Fundamentals
Example 3.1 61 (3)
Example 3.2 64 (1)
3.3 Analog Control of Mechatronic Systems 65 (17)
3.3.1 Analog PID Controllers 66 (4)
3.3.2 Control Bounds 70 (1)
3.3.3 Control of a Mechatronic System with 71 (11)
a Permanent-Magnet DC Motor Using a PID
Controller
3.4 The Hamilton-Jacobi Theory and Optimal 82 (20)
Control of Mechatronic Systems
Example 3.3 84 (1)
3.4.1 Linear Continuous-Time Mechatronic 85 (10)
Systems: Linear Quadratic Control
Example 3.4 88 (2)
Example 3.5 90 (2)
Example 3.6 92 (3)
3.4.2 Tracking Control of Linear 95 (3)
Mechatronic systems
3.4.3 Proportional-Integral Control Laws 98 (16)
Design for Mechatronic Systems
Example 3.7 100(2)
3.5 Time-Optimal Control of Mechatronic 102(3)
Systems
Example 3.8 103(1)
Example 3.9 103(2)
3.6 Sliding-Mode Control in Mechatronic 105(5)
Systems
Example 3.10: Soft-Switching Control of a 106(4)
Mechatronic System with synchronous Motor
3.7 Feedback Linearization and Control of 110(4)
Permanent-Magnet Synchronous Motors
3.8 Control of Nonlinear Mechatronic Systems 114(10)
3.8.1 Constrained Control of Nonlinear 114(3)
Mechatronic Systems: Hamilton-Jacobi Concept
Example 3.11 116(1)
3.8.2 Optimization of Mechatronic Systems 117(7)
Using Novel Performance Functionals
Example 3.12 122(1)
Example 3.13 123(1)
3.9 Digital Control of Mechatronic Systems 124(33)
Example 3.14 125(3)
Example 3.15 128(5)
Example 3.16 133(2)
Example 3.17 135(2)
3.9.1 Control of Mechatronic Systems with 137(7)
Permanent-Magnet DC Motors Using Digital
Controllers
3.9.2 Control of Discrete-Time Mechatronic 144(8)
Systems Using the Hamilton-Jacobi Theory
3.9.2.1 Linear Quadratic Regulator Problem 144(5)
Example 3.18 146(1)
Example 3.19 147(2)
3.9.2.2 Constrained Optimization of 149(3)
Discrete-Time Mechatronic Systems
3.9.3 Tracking Control of Discrete-Time 152(1)
Systems
3.9.4 Tracking Control of Nonlinear 153(2)
Mechatronic Systems
3.9.5 Constrained Optimization of Nonlinear 155(2)
Mechatronic Systems
References 157(2)
Chapter 4 Integrated Circuits, Power
Electronics, and Power Converters
4.1 Integrated Circuits 159(11)
4.2 Circuit Elements 170(7)
4.3 Power Amplifiers and Power Converters 177(1)
4.4 Switching Converters 178(11)
4.4.1 Buck Converters 178(6)
Example 4.1 182(2)
4.4.2 Boost Converters 184(2)
Example 4.2 185(1)
4.4.3 Model Development Using the Lagrange 186(3)
Concept: Boost DC-DC Converters
4.5 High-Frequency Switching Converters 189(9)
4.5.1 Buck-Boost Converters 189(1)
4.5.2 Cuk Converters 189(3)
Example 4.3 191(1)
4.5.3 Flyback and Forward Converters 192(3)
Example 4.4 194(1)
4.5.4 Resonant Converters 195(1)
4.5.5 Modeling of Switching Converters 196(5)
Example 4.5 197(1)
References 198(3)
Chapter 5 Direct-Current Miniscala Machines
5.1 Direct-Current Mini- and Microscale 201(14)
Machines
5.1.1 Separately Excited Direct-Current 203(8)
Machines
5.1.2 Simulation of a Separately Executed 211(15)
Direct Current Motor
Example 5.1 212(3)
5.2 Permanent-Magnet Direct-Current Machines 215(5)
Example 5.2 217(2)
Example 5.3 219(1)
5.3 Modeling and Analysis of an Open-Loop 220(6)
Mechatronic System: Permanent-Magnet,
Direct-Current Generators Driven by
Permanent-Magnet Direct-Current Motors
Example 5.4 222(4)
5.4 Mechatronic Systems with Permanent-Magnet 226(10)
DC Machines
5.4.1 Permanent-Magnet, Direct-Current 232(2)
Motors Controlled by Step-Down Converters
5.4.2 Permanent-Magnet Direct-Current 234(1)
Motors Controlled by Boost Converters
5.4.3 Permanent-Magnet Direct-Current 235(1)
Motors Controlled by the Cuk Converter
5.5 Analysis and Design of a Mechatronic 236(5)
System with Experimental Verification
References 241(2)
Chapter 6 Induction Mini- and Microscale
Machines
6.1 Voltage, Flux Linkages, and Torque 243(19)
Equations for Three-Phase Induction Machines:
Dynamics in the Machine Variables
6.1.1 Torque-Speed Characteristics and 244(4)
Control of Induction Motors
6.1.2 Modeling of Three-Phase Induction 248(14)
Machines
Example 6.1 260(2)
6.2 Mathematical Models of Three-Phase Mini- 262(21)
and Microscale Induction Motors in the
Arbitrary, Stationary, Rotor, and Synchronous
Reference Frames
Example 6.2 262(16)
6.2.1 Development of the Mathematical Model 278(2)
in the Rotor Reference Frame
6.2.2 Mathematical Model of Three-Phase 280(3)
Induction Motors in the Synchronous
Reference Frame
6.3 Power Converters and Control of Induction 283(10)
Motors
References 293(3)
Chapter 7 Synchronous Mini- and Microscale
Machines
7.1 Synchronous Reluctance Motors 296(3)
Example 7.1 298(1)
7.2 Permanent-Magnet Synchronous Machines 299(26)
7.2.1 Two-Phase Permanent-Magnet 300(3)
Synchronous Motors
7.2.2 Three-Phase Permanent-Magnet 303(10)
Synchronous Machines
7.2.3 The Lagrange Equations of Motion and 313(2)
Dynamics of Permanent-Magnet Synchronous
Motors
7.2.4 Three-Phase Permanent-Magnet 315(3)
Synchronous Generators
7.2.5 Mathematical Models of 318(7)
Permanent-Magnet Synchronous Machines in
the Arbitrary, Rotor, and Synchronous
Reference Frames
7.2.5.1 Arbitrary Reference Frame 318(2)
7.2.5.2 Rotor Reference Frame 320(4)
7.2.5.3 Synchronous Reference Frame 324(1)
7.3 Stepper Motors 325(7)
7.3.1 Mathematical Model of Stepper Motors 325(4)
in Machine Variables
7.3.2 Mathematical Models of 329(3)
Permanent-Magnet Stepper Motors in the
Rotor and Synchronous Reference Frames
References 332(1)
Chapter 8 Mini- and Microelectromechanical and
Mechatronic systems
8.1 Introduction 333(2)
8.2 Biomimetics and Its Application to 335(3)
Micromachines
8.3 Control of MEMS 338(2)
8.4 Synthesis of Micromachines: Synthesis and 340(3)
Classification Solver
8.5 Fabrication of MEMS and 343(12)
Microelectromechanical Motion Devices
Example 8.1 350(5)
References 355(2)
Chapter 9 Electroactive and Magnetoactive
Materials
9.1 Introduction 357(1)
9.2 Piezoelectricity 358(7)
9.2.1 Actuation Equations 358(2)
9.2.2 Sensing Equations 360(2)
9.2.3 Stress Equations 362(1)
9.2.4 Actuator Equations in Terms of 362(1)
Polarization
9.2.5 Compressed Matrix Notation Formulation 363(1)
9.2.6 Relations Between the Constants 364(1)
9.2.7 Electromechanical Coupling Coefficient 364(1)
9.2.8 Higher Order Models of the 365(1)
Electroactive Response
9.3 Piezoelectric Phenomena 365(3)
9.3.1 Polarization 365(1)
9.3.2 Spontaneous Polarization 365(1)
9.3.3 Permanent Polarization 366(1)
9.3.4 Paraelectric Materials 366(1)
9.3.5 Ferroelectric Materials 366(1)
9.3.6 Antiferroelectric Materials 366(2)
9.3.7 Piezoelectricity 368(1)
9.3.8 Pyroelectricity 368(1)
9.4 Ferroelectric Perovskites 368(9)
9.4.1 Polarization of the Perovskite 369(2)
Structure
Example 9.1 370(1)
9.4.2 Temperature Dependence of Spontaneous 371(1)
Polarization, Spontaneous Strain, and
Dielectric Permittivity
9.4.3 Induced Strain and Induced 371(2)
Polarization
9.4.4 Phenomenology of Piezoelectric and 373(1)
Electrostrictive Behavior
9.4.4.1 Ferroelectric Phase 373(1)
9.4.4.2 Paraelectric Phase 373(1)
9.4.5 Perovskite Compounds 374(2)
9.4.5.1 PZT Perovskite: A Typical Solid 374(2)
Solution Perovskite
9.4.5.2 Complex Perovskites 376(1)
9.4.5.3 Other Perovskites 376(1)
9.4.6 Mechatronics Applications of 376(1)
Perovskite Materials
9.5 Fabrication of Electroactive Ceramics 377(4)
9.5.1 Conventional Fabrication of 378(1)
Ferroelectric Ceramics
9.5.1.1 Synthesis of the Ferroelectric 378(1)
Perovskite Powders
9.5.1.2 Sintering and Compaction of the 378(1)
Perovskite Powders into Ferroelectric
Ceramics
9.5.1.3 Electric Poling of the 379(1)
Ferroelectric Ceramics
9.5.2 Novel Methods in the Fabrication of 379(2)
Ferroelectric Ceramics
9.5.2.1 Doping 380(1)
9.5.2.2 Coprecipitation 380(1)
9.5.2.3 Alkoxide Hydrolysis (Sol-Gel) 380(1)
9.5.2.4 Thin-Film Fabrication 380(1)
9.5.2.5 Single-Crystal Fabrication 381(1)
9.6 Common Piezoelectric Ceramics 381(8)
9.6.1 Induced-Strain Effects in 381(3)
Piezoelectric Ceramics
9.6.2 Navy Types Designation of 384(1)
Piezoelectric Ceramics
9.6.3 Soft and Hard Piezoelectric Ceramics 384(4)
9.6.4 Nonlinear Behavior 388(1)
9.7 Electrostrictive Ceramics 389(4)
9.7.1 Electrostrictive Ceramics Relaxor 389(1)
Ferroelectrics
9.7.2 Properties and Constitutive Equations 390(3)
of Electrostrictive Ceramics
9.7.3 Typical Applications of 393(1)
Electrostrictive Ceramics
9.8 Piezopolymers 393(4)
9.8.1 Fabrication of Piezopolymers 394(1)
9.8.2 Piezopolymer Properties and 394(2)
Constitutive Equations
9.8.3 Typical Piezopolymer Applications 396(1)
9.9 Magnetostrictive Materials 397(10)
9.9.1 Physical Explanation of the 398(3)
Magnetostrictive Phenomenon
9.9.2 Commercially Available 401(2)
Magnetostrictive Materials
9.9.3 The Use of Magnetostrictive Materials 403(2)
9.9.4 Linear Equations of Piezomagnetism 405(2)
9.10 New Developments in Electroactive and 407(4)
Magnetoactive Materials
9.10.1 Single Crystals 407(2)
9.10.2 Antiferroelectric Materials 409(1)
9.10.3 Magnetostrictive Shape Memory Alloys 410(1)
9.11 Summary and Conclusions 411(3)
9.11.1 Advantages and Limitations of 412(2)
Piezoelectric and Electrostrictive
Actuation Materials
9.11.2 Advantages and Limitations of 414(1)
Magnetostrictive Actuators
References 414(1)
Commercial Suppliers of Electroactive and 415(2)
Magnetoactive Materials
Chapter 10 Induced-Strain Actuators
10.1 Introduction 417(1)
10.2 Active-Material Induced-Strain Actuators 417(3)
10.3 Construction of Induced-Strain Actuators 420(5)
10.3.1 Electroactive Stacks 420(3)
10.3.2 Electroactive Actuators with Casing 423(2)
and Prestress Mechanism
10.3.3 Magnetostrictive Actuators 425(1)
10.4 Modeling of Induced-Strain Actuators 425(7)
10.4.1 Typical Performance of Solid-State, 428(3)
Induced-Strain Actuators
10.4.2 Linearized Electromechanical 431(1)
Behavior of Solid-State Induced-Strain
Actuators
10.5 Principles of Induced-Strain Structural 432(17)
Actuation
10.5.1 Displacement Analysis 433(4)
10.5.1.1 Output Energy Analysis 435(2)
10.5.2 Induced-Strain Actuators with 437(2)
Compliant Support
10.5.2.1 Displacement Analysis 437(1)
10.5.2.2 Output Energy Analysis 438(1)
10.5.3 Displacement-Amplified 439(5)
Induced-Strain Actuators
10.5.3.1 Displacement Analysis 439(1)
10.5.3.2 Output Energy Analysis 440(2)
10.5.3.3 Optimal Kinematic Gain (G) for a 442(2)
Given Value of
10.5.4 Displacement-Amplified, 444(3)
Induced-Strain Actuators with Support and
Transmission Elasticity
10.5.4.1 Displacement Analysis 445(2)
10.5.4.2 Output Energy Analysis 447(1)
10.5.5 Electric Response 447(2)
10.6 Analysis of Induced-Strain Actuation for 449(8)
Dynamic Operation
10.6.1 Mechanical Response 452(3)
10.6.2 Electric Response 455(2)
10.7 Electrical Power and Energy of 457(12)
Induced-Strain Actuators
10.7.1 Static Operation 457(1)
10.7.2 Dynamic Operation 458(2)
10.7.3 Electric Power with Bias Voltage 460(2)
10.7.4 Electrical Power Input to an 462(2)
Induced-Strain Actuator
10.7.5 Mechanical Power Output from an 464(2)
Induced-Strain Actuator
10.7.6 Energy Conversion Efficiency 466(2)
10.7.7 Power Conversion Efficiency 468(1)
10.8 Energy-Based Comparison of 469(19)
Induced-Strain Actuators
10.8.1 Data Collection 469(3)
10.8.2 Results 472(10)
10.8.2.1 Data Reduction 472(3)
10.8.2.2 Effective Full-Stroke 475(2)
Electromechanical Coupling Coefficient
10.8.2.3 Maximum Energy Output 477(1)
Capabilities
10.8.2.4 Active Material Energy Density 477(1)
10.8.2.5 Actuator Energy Density 477(1)
10.8.2.6 Energy Conversion Efficiency 477(1)
10.8.2.7 Power and Power Density 477(3)
10.8.2.8 Effect of Casing and Prestress 480(1)
Spring
10.8.2.9 Consistency Checks 480(2)
10.8.2.10 Nonlinear Operation 482(1)
10.8.3 Discussion of Results 482(6)
10.9 Efficient Design of Induced-Strain 488(14)
Actuator Applications
10.9.1 Efficient Static Design 489(2)
10.9.2 Efficient Dynamic Design 491(2)
10.9.3 Quasi-Static Dynamic Operation 493(1)
10.9.4 Undamped Dynamic Operation 494(1)
10.9.5 The Damped Dynamic System 495(2)
10.9.6 Design Example of Induced-Strain 497(5)
Actuation Application
10.9.7 Multidisciplinary Design 502(1)
Optimization of Induced-Strain Actuation
Applications
10.10 Power Supply Issues in Induced-Strain 502(4)
Actuation
10.11 Summary and Conclusions 506(2)
References 508(1)
Commercial Suppliers of Electroactive and 508(1)
Magnetoactive Materials
Chapter 11 Piezoelectric Wafer Active sensors
11.1 Introduction 509(2)
11.2 Piezoelectric Wafer Active Sensor 511(26)
Resonators
11.2.1 Mechanical Response 514(2)
11.2.1.1 Solution in Terms of the Induced 515(1)
Strain (SISA) and Induced Displacement
(uISA)
11.2.1.2 Tip Strain and Displacement 516(1)
11.2.2 Electrical Response 516(3)
11.2.3 Resonances 519(11)
11.2.3.1 Mechanical Resonances 519(5)
11.2.3.1.1 Antisymmetric Resonances 520(1)
(cos = 0)
11.2.3.1.2 Symmetric Resonances (sin = 521(3)
0)
11.2.3.2 Electromechanical Resonances 524(4)
11.2.3.2.1 Origin of the 526(2)
Electromechanical Resonance
11.2.3.3 Effect of Internal Damping 528(1)
11.2.3.4 Admittance and Impedance hots 528(2)
11.2.4 Experimental Results 530(7)
11.2.4.1 Geometric Measurements 531(1)
11.2.4.2 Electrical Capacitance 531(1)
Measurements
11.2.4.3 Intrinsic E/M Impedance and 531(2)
Admittance Characteristics of the
Piezoelectric Wafer Active Sensor
11.2.4.4 Comparison Between Measured and 533(4)
Calculated E/M Admittance Spectra
11.3 Circular Piezoelectric Wafer Active 537(13)
Sensor Resonators
11.3.1 Modeling of a Circular PWAS 537(4)
11.3.2 Electrical Response 541(4)
11.3.3 Resonances 545(4)
11.3.3.1 Mechanical Resonances 545(2)
11.3.3.2 Electromechanical Resonances 547(2)
11.3.4 Experimental Results 549(1)
11.4 Piezoelectric Wafer Active Sensor 550(1)
Ultrasonic Transducers
11.5 Shear-Layer Coupling Between 550(13)
Piezoelectric Wafer Active Sensors and
Structure
11.5.1 Symmetric Case 553(1)
11.5.2 Antisymmetric Case 554(1)
11.5.3 Shear Lag Solution 555(3)
Example 11.1 556(2)
11.5.4 Pin-Force Model 558(2)
11.5.5 Energy Transfer Between the PWAS and 560(2)
the Structure
11.5.5.1 Energy Transfer Through the 560(2)
Shear-Lag Model
11.5.5.2 Energy Transfer Through the 562(1)
Pin-Force Model
11.5.6 Conditions for Optimum Energy 562(1)
Transfer
11.6 Elastic Waves in Structures 563(17)
11.6.1 Review of Wave Propagation Theory 563(1)
11.6.2 Pressure Waves 564(1)
11.6.3 Shear Waves 565(1)
11.6.4 Flexural Waves 565(2)
11.6.5 Rayleigh Wave 567(1)
11.6.6 Lamb Wave 568(1)
11.6.7 Derivation of Lamb Wave Equations 569(9)
11.6.7.1 Symmetric Solution 573(1)
11.6.7.2 Antisymmetric Solution 574(3)
11.6.7.3 Group Velocity Dispersion Curves 577(1)
11.6.8 Summary 578(2)
11.7 Circular-Crested Lamb Waves 580(15)
11.7.1 Equations and Derivations 581(12)
11.7.1.1 Symmetric Modes of the Circular 587(3)
Crested Lamb Waves
11.7.1.2 Antisymmetric Modes of the 590(3)
Circular Crested Lamb Waves
11.7.2 Asymptotic Behavior at Large Radial 593(2)
Distance from the Origin
11.7.3 Summary 595(1)
11.8 Lamb Wave Methods for Nondestructive 595(1)
Evaluation and Damage Detection
11.9 Axial Waves Excited by Piezoelectric 596(6)
Wafer Active Sensors
11.9.1 General Solution 596(2)
11.9.2 Solution for an Ideally Bonded PWAS 598(4)
11.10 Flexural Waves Excited by Piezoelectric 602(6)
Wafer Active Sensors
11.10.1 Solution for an Ideally Bonded PWAS 605(3)
11.11 Lamb Waves Excited by Piezoelectric 608(9)
Wafer Active Sensors
11.11.1 Lamb Wave Solution Under Nonuniform 609(5)
Shear-Stress Boundary Excitation
11.11.1.1 Symmetric Solution 610(2)
11.11.1.2 Antisymmetric Solution 612(1)
11.11.1.3 Total solution 613(1)
11.11.2 Ideal Bonding Solution 614(3)
11.12 Pitch-Catch Piezoelectric Wafer Active 617(3)
Sensor Experiments
11.12.1 Experimental Setup 617(1)
11.12.2 Excitation Signal 617(1)
11.12.3 Lamb Mode Tuning 618(1)
11.12.4 Pitch-Catch Results 619(1)
11.13 Pulse-Echo Piezoelectric Wafer Active 620(9)
Sensor Experiments
11.13.1 Reflections Analysis 621(2)
11.13.2 Pulse-Echo Reflections Analysis 623(1)
11.13.3 Pulse-Echo Damage Detection in 624(5)
Aging Aircraft Panels
11.14 Piezoelectric Wafer Active Sensor 629(11)
Arrays for Embedded Ultrasonics Structural
Radar
11.14.1 Embedded-Ultrasonic Structural Radar 630(4)
11.14.1.1 Transmitter Beamforming 632(1)
11.14.1.2 Receiver Beamforming 632(1)
11.14.1.3 Phased-Array Pulse-Echo 632(1)
11.14.1.4 Practical Implementation of the 633(1)
EUSR Algorithm
11.14.2 EUSR System Design and Experimental 634(6)
Validation
11.14.2.1 Experimental Setup 635(1)
11.14.2.2 Implementation of the EUSR Data 636(1)
Processing Algorithm
11.14.2.3 Experimental Results 636(4)
11.15 Constrained Piezoelectric Wafer Active 640(11)
Sensor
11.15.1 One-Dimensional Analysis 640(6)
11.15.1.1 Mechanical Response 642(1)
11.15.1.2 Electrical Response 643(3)
11.15.2 Asymptotic Behavior 646(1)
11.15.2.1 Free Piezoelectric Wafer 646(1)
11.15.2.2 Fully Constrained (Blocked) 646(1)
Piezoelectric Wafer
11.15.2.3 Constrained Piezoelectric Wafer 647(1)
Under Quasi-Static Conditions
11.15.3 Damping Effects 647(1)
11.15.4 Resonances 648(1)
11.15.5 Two-Dimensional Analysis of a 649(2)
Constrained Circular PWAS
11.16 Piezoelectric Wafer Active Modal Sensors 651(14)
11.16.1 Analytical Model 652(5)
11.16.1.1 Dynamics of the Structural 653(1)
Substrate
11.16.1.2 Definition of the Excitation 653(1)
Forces and Moments
11.16.1.3 Axial Vibrations 653(1)
11.16.1.4 Flexural Vibrations 654(1)
11.16.1.5 Calculation of Frequency 655(2)
Response Function and Dynamic Structural
Stiffness
11.16.2 Numerical Simulations and 657(2)
Experimental Results
11.16.3 Comparison with Conventional Methods 659(2)
11.16.4 Noninvasive Characteristics of the 661(1)
PWAS Modal Sensors
11.16.5 PWAS Self-Diagnostics 662(1)
11.16.6 Typical Applications 663(1)
11.16.7 Summary 663(2)
11.17 Circular Piezoelectric Wafer Active 665(9)
Modal Sensors
11.17.1 Modeling of the Interaction Between 665(1)
a Circular PWAS and a Circular Plate
11.17.2 Modeling of the Circular Plate 666(4)
Dynamics
11.17.2.1 Calculation of the Effective 667(3)
Structural Stiffness
11.17.3 Model Validation Through Numerical 670(3)
and Experimental Results
11.17.4 Summary 673(1)
11.18 Damage Detection with PWAS Modal Sensors 674(18)
11.18.1 Damage Detection Experiments on 674(8)
Circular Plates
11.18.1.1 Overall Statistics for Damage 675(3)
Metrics
11.18.1.2 Probabilistic Neural Networks 678(2)
for Damage Identification
11.18.1.3 Damage Detection in Circular 680(2)
Plates with Probabilistic Neural Networks
11.18.2 Damage Identification in Aging 682(9)
Aircraft Panels
11.18.2.1 Classification of Crack Damage 683(3)
in the PWAS Near Field
11.18.2.2 Classification of Crack Damage 686(5)
in the PWAS Medium Field
11.18.3 Summary 691(1)
11.19 Summary and Conclusions 692(1)
References 693(4)
Chapter 12 Microcontrollers for sensing,
Actuation, and Process Control
12.1 Introduction 697(8)
12.1.1 Microprocessors and Microcontrollers 697(6)
12.1.1.1 Embedded Processing 698(1)
12.1.1.2 Microcontrollers, 698(2)
Microprocessors, and DSPs
12.1.1.2.1 Embedded Programming 699(1)
12.1.1.3 Microcontroller Nomenclature 700(3)
12.1.2 Common Microcontroller Types 703(2)
12.2 Microcontroller Architecture 705(7)
12.2.1 Basic Microcontroller Architecture 705(2)
12.2.2 Microcontroller CPU Architecture 707(1)
12.2.3 The MC68F1C11 Microcontroller 707(1)
12.2.4 Microcontroller Packaging 708(1)
12.2.5 Single-Chip and Expanded Modes of 708(2)
Operation
12.2.6 The Port Replacement Unit 710(1)
12.2.7 The Microcontroller Evaluation Board 711(1)
12.2.7.1 Adapt11C24DX Microcontroller 711(1)
Evaluation Board
12.2.7.2 EVBplus2 Microcontroller 712(1)
Evaluation Board
12.3 Programming Languages for 712(9)
Microcontrollers
12.3.1 Assembly Language 714(2)
12.3.1.1 Addressing Modes 716(1)
12.3.2 Microcontroller Commands 716(1)
12.3.3 Sample Program in Assembly Language 717(4)
with MCU Commands
12.3.3.1 Problem Statement 717(1)
12.3.3.2 Program Description 717(1)
12.3.3.3 Flowchart 718(1)
12.3.3.4 Assembly (.ASM) Code 718(1)
12.3.3.5 List (.LST) Output Resulting 719(2)
from Assembly
12.4 Parallel Communication with 721(9)
Microcontrollers
12.4.1 Port B 722(1)
Example 12.1 722(1)
12.4.2 Port C 722(3)
Example 12.2 723(2)
12.4.3 Square Wave 725(3)
12.4.4 The Buttons Box 728(2)
12.5 Serial Communication with 730(12)
Microcontrollers
12.5.1 Types of Serial Communication 730(1)
12.5.2 Serial Communication Basics 731(1)
12.5.3 ASCII Code Character Set 732(1)
Example 12.3 733(1)
12.5.4 Programming the Serial Communication 733(1)
Interface SCI
12.5.5 SCI Registers and Pins 734(2)
12.5.6 Reception and Transmission Enable 736(1)
12.5.7 Serial Communication Reception 736(1)
12.5.7.1 Detection of Serial 736(1)
Communication Reception
12.5.7.2 Retrieval of Received Serial 736(1)
Communication Data
12.5.7.3 Clearing RDRF 737(1)
12.5.7.4 Program SCI recept 737(1)
12.5.8 Serial Communication Transmission 737(2)
12.5.8.1 Detection of Serial 738(1)
Communication Readiness for Transmission
12.5.8.2 Placing Data into SCDR To Be 738(1)
Transmitted Through the Serial
Communication Interface
12.5.8.3 Clearing TDRE 738(1)
12.5.8.4 Program SCI transmit 739(1)
12.5.9 Interrogating Bits Using Masks 739(1)
12.5.10 Reading Serial Communication Data 740(1)
on the Oscilloscope Screen
12.5.11 Serial Communication Echo 740(2)
12.6 Microcontroller Timer Functions 742(13)
12.6.1 Timer Functions 742(1)
12.6.2 Timer Registers 743(1)
12.6.3 Timer Counter 744(1)
12.6.4 Timer Overflow Flag 744(2)
Example 12.4 744(1)
12.6.4.1 Detecting the Timer Overflow Flag 745(1)
12.6.4.2 Clearing the Timer Overflow Flag 746(1)
12.6.5 Input Capture 746(2)
12.6.6 Output Compare 748(2)
12.6.7 Input Capture Example 750(1)
12.6.8 Output Compare Example 750(5)
12.6.8.1 Program Calibration 752(1)
12.6.8.2 Generating a Desired Frequency 753(2)
12.7 Analog/Digital Conversion with 755(11)
Microcontrollers
12.7.1 Analog-to-Digital Conversion 755(1)
Example 12.5 756(1)
Solution 756(1)
12.7.2 Quantization Formulas 756(1)
Example 12.6 757(1)
Solution 757(1)
Example 12.7 757(1)
Solution 757(1)
12.7.3 Half-Bit vs. One-Bit Quantization 757(1)
Error
12.7.4 Physical Implementation of A/D 758(2)
Conversion
12.7.5 The A/D Conversion Channels, Port, 760(1)
and Reference Voltages
12.7.6 A/D Converter Registers 760(1)
12.7.7 Initialization of the A/D Converter 761(1)
12.7.8 Control and Status of the A/D 761(1)
Converter
12.7.9 The A/D Conversion Results 761(1)
12.7.10 A/D Conversion Modes 761(1)
12.7.11 A/D Conversion Programs 762(4)
12.7.11.1 Program for Performing a Single 763(1)
A/D Conversion on a Single Channel
12.7.11.2 Program for Performing 763(2)
Continuous A/D Conversion on a Single
Channel
12.7.11.3 Program for Performing a Single 765(1)
A/D Conversion on Multiple Channels
12.7.11.4 Program for Performing 765(1)
Continuous A/D Conversion on Multiple
Channels
12.8 Actuation Applications of 766(18)
Microcontrollers
12.8.1 DC Motors 767(5)
12.8.1.1 Principles of Operation 768(1)
12.8.1.2 DC Motor Equations 768(2)
12.8.1.3 The Power Dissipation Constraint 770(1)
on a DC Motor
12.8.1.4 Torque Characteristic of a DC 770(1)
Motor
12.8.1.5 Startup Torque 771(1)
12.8.1.6 Speed Characteristic of a DC 771(1)
Motor
12.8.1.7 Startup Voltage 772(1)
12.8.1.8 Maximum Speed 772(1)
12.8.2 Linear Control of a DC Motor 772(1)
12.8.3 Digital Linear Control of a DC Motor 772(1)
12.8.4 Pulse-Width Modulation Control of a 773(3)
DC Motor
12.8.5 Stepper Motors 776(5)
12.8.5.1 Stepper Motor Construction 776(1)
12.8.5.2 Energizing the Stepper Motor 777(1)
12.8.5.3 Stepper Motor Drive Electronics 777(2)
12.8.5.4 Microcontroller Control of a 779(2)
Stepper Motor
12.8.6 Servo Motors 781(2)
12.8.7 Dedicated Motor Drivers Based on 783(1)
Microcontrollers and DSPs
12.9 Sensing Applications of Microcontrollers 784(9)
12.9.1 Digital Sensors: the Emitter Detector 784(1)
12.9.2 Drop Tower Experiment 785(1)
12.9.3 Digital Tachometer 786(4)
12.9.3.1 Program Ex RPM 1 788(1)
12.9.3.2 Program Ex RPM 2 788(2)
12.9.4 Analog Sensors: The Temperature 790(3)
Sensor
12.10 Microcontroller Process Control 793(7)
12.10.1 Open-Loop vs. Closed-Loop Control 794(6)
12.10.1.1 Open-Loop Control 794(1)
12.10.1.2 Closed-Loop Control 795(1)
12.10.1.3 The Use of Microcontrollers for 796(1)
Process Control
12.10.1.4 The Use of Microcontrollers for 796(1)
Open-Loop Process Control
Example 12.8: Open-Loop Control of a 796(1)
Bottle-Filling Process
Example 12.9: Open-Loop Control of a 797(1)
Heating Process
12.10.1.5 The Use of Microcontrollers in 797(3)
Closed-Loop Control
Example 12.10: Closed-Loop Control of a 798(1)
Bottle-Filling Process
Example 12.11: Closed-Loop Control of a 799(1)
Heating Process
12.10.2 Hierarchical Process Control 800(1)
Example 12.12: Hierarchical Process 800(1)
Control of a Pump Station (Miniplant
Simulation)
References 800(3)
Index 803