Op Amps for Everyone : Design Reference (2ND)

Op Amps for Everyone : Design Reference (2ND)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 464 p.
  • 言語 ENG,ENG
  • 商品コード 9780750677011
  • DDC分類 621.395

基本説明

Texas Instruments' complete professional-level tutorial and reference to op amps (operational amplitiers).

Full Description


The operational amplifier ('op amp') is the most versatile and widely used type of analog IC, used in audio and voltage amplifiers, signal conditioners, signal converters, oscillators, and analog computing systems. Almost every electronic device uses at least one op amp. This book is Texas Instruments' complete professional-level tutorial and reference to operational amplifier theory and applications. Among the topics covered are basic op amp physics (including reviews of current and voltage division, Thevenin's theorem, and transistor models), idealized op amp operation and configuration, feedback theory and methods, single and dual supply operation, understanding op amp parameters, minimizing noise in op amp circuits, and practical applications such as instrumentation amplifiers, signal conditioning, oscillators, active filters, load and level conversions, and analog computing. There is also extensive coverage of circuit construction techniques, including circuit board design, grounding, input and output isolation, using decoupling capacitors, and frequency characteristics of passive components.The material in this book is applicable to all op amp ICs from all manufacturers, not just TI. Unlike textbook treatments of op amp theory that tend to focus on idealized op amp models and configuration, this title uses idealized models only when necessary to explain op amp theory. The bulk of this book is on real-world op amps and their applications; considerations such as thermal effects, circuit noise, circuit buffering, selection of appropriate op amps for a given application, and unexpected effects in passive components are all discussed in detail. Published in conjunction with Texas Instruments, this is a single volume, professional-level guide to op amp theory and applications. It covers circuit board layout techniques for manufacturing op amp circuits.

Table of Contents

    The Op Amp's Place In The World                1  (4)
Review of Circuit Theory 5 (12)
Introduction 5 (1)
Laws of Physics 5 (2)
Voltage Divider Rule 7 (1)
Current Divider Rule 8 (1)
Thevenin's Theorem 9 (3)
Superposition 12 (1)
Calculation of a Saturated Transistor 13 (1)
Circuit
Transistor Amplifier 14 (3)
Development of the Ideal Op Amp Equations 17 (12)
Ideal Op Amp Assumptions 17 (2)
The Noninverting Op Amp 19 (1)
The Inverting Op Amp 20 (1)
The Adder 21 (1)
The Differential Amplifier 22 (1)
Complex Feedback Networks 23 (2)
Video Amplifiers 25 (1)
Capacitors 25 (2)
Summary 27 (2)
Single Supply Op Amp Design Techniques 29 (22)
Single Supply versus Dual Supply 29 (2)
Circuit Analysis 31 (7)
Simultaneous Equations 38 (12)
Case 1: VOUT = +mVIN+b 37 (4)
Case 2: VOUT = +mVIN -- b 41 (3)
Case 3: VOUT = --mVIN + b 44 (3)
Case 4: VOUT = --mVIN -- b 47 (3)
Summary 50 (1)
Feedback and Stability Theory 51 (16)
Why Study Feedback Theory? 51 (1)
Block Diagram Math and Manipulations 51 (5)
Feedback Equation and Stability 56 (1)
Bode Analysis of Feedback Circuits 57 (5)
Loop Gain Plots are the Key to 62 (3)
Understanding Stability
The Second Order Equation and 65 (1)
Ringing/Overshoot Predictions
References 66 (1)
Development of the Non Ideal Op Amp 67 (10)
Equations
Introduction 67 (1)
Review of the Canonical Equations 68 (3)
Noninverting Op Amps 71 (1)
Inverting Op Amps 72 (2)
Differential Op Amps 74 (3)
Voltage-Feedback Op Amp Compensation 77 (22)
Introduction 77 (1)
Internal Compensation 78 (6)
External Compensation, Stability, and 84 (1)
Performance
Dominant-Pole Compensation 85 (3)
Gain Compensation 88 (1)
Lead Compensation 89 (3)
Compensated Attenuator Applied to Op Amp 92 (2)
Lead-Lag Compensation 94 (2)
Comparison of Compensation Schemes 96 (1)
Conclusions 97 (2)
Current-Feedback Op Amp Analysis 99 (14)
Introduction 99 (1)
CFA Model 99 (1)
Development of the Stability Equation 100(1)
The Noninverting CFA 101(2)
The Inverting CFA 103(2)
Stability Analysis 105(2)
Selection of the Feedback Resistor 107(2)
Stability and Input Capacitance 109(1)
Stability and Feedback Capacitance 110(1)
Compensation of CF and CG 111(1)
Summary 112(1)
Voltage- and Current-Feedback Op Amp 113(10)
Comparison
Introduction 113(1)
Precision 114(1)
Bandwidth 115(3)
Stability 118(1)
Impedance 119(1)
Equation Comparison 120(3)
Op Amp Noise Theory and Applications 123(24)
Introduction 123(1)
Characterization 123(3)
rms versus P-P Noise 123(2)
Noise Floor 125(1)
Signal-to-Noise Ratio 125(1)
Multiple Noise Sources 125(1)
Noise Units 126(1)
Types of Noise 126(6)
Shot Noise 127(2)
Thermal Noise 129(1)
Flicker Noise 130(1)
Burst Noise 131(1)
Avalanche Noise 131(1)
Noise Colors 132(2)
White Noise 133(1)
Pink Noise 133(1)
Red/Brown Noise 134(1)
Op Amp Noise 134(7)
The Noise Corner Frequency and Total 134(1)
Noise
The Corner Frequency 135(1)
Op Amp Circuit Noise Model 136(2)
Inverting Op Amp Circuit Noise 138(1)
Noninverting Op Amp Circuit Noise 139(1)
Differential Op Amp Circuit Noise 140(1)
Summary 140(1)
Putting It All Together 141(4)
References 145(2)
Understanding Op Amp Parameters 147(22)
Introduction 147(1)
Operational Amplifier Parameter Glossary 148(6)
Additional Parameter Information 154(15)
Input Offset Voltage 154(2)
Input Current 156(1)
Input Common Mode Voltage Range 157(1)
Differential Input Voltage Range 157(1)
Maximum Output Voltage Swing 158(1)
Large Signal Differential Voltage 159(1)
Amplification
Input Parasitic Elements 159(1)
Output Impedance 160(1)
Common-Mode Rejection Ratio 161(1)
Supply Voltage Rejection Ratio 161(1)
Supply Current 162(1)
Slew Rate at Unity Gain 162(1)
Equivalent Input Noise 163(1)
Total Harmonic Distortion Plus Noise 164(1)
Unity Gain Bandwidth and Phase Margin 165(3)
Settling Time 168(1)
Instrumentation: Sensors to A/D Converters 169(24)
Introduction 169(5)
Transducer Types 174(5)
Design Procedure 179(1)
Review of the System Specifications 180(1)
Reference Voltage Characterization 180(1)
Transducer Characterization 181(2)
ADC Characterization 183(1)
Op Amp Selection 183(1)
Amplifier Circuit Design 184(7)
Test 191(1)
Summary 191(1)
References 191(2)
Wireless Communication: Signal Conditioning 193(22)
for IF Sampling
Introduction 193(1)
Wireless Systems 193(5)
Selection of ADCs/DACs 198(4)
Factors Influencing the Choice of Op Amps 202(1)
Anti-Aliasing Filters 203(2)
Communication D/A Converter 205(1)
Reconstruction Filter
External Vref Circuits for ADCs/DACs 205(5)
High-Speed Analog Input Drive Circuits 210(4)
References 214(1)
Interfacing D/A Converters to Loads 215(24)
Introduction 215(1)
Load Characteristics 215(1)
DC Loads 215(1)
AC Loads 216(1)
Understanding the D/A Converter and its 216(4)
Specifications
Types of D/A Converters --- 216(1)
Understanding the Tradeoffs
The Resistor Ladder D/A Converter 216(1)
The Weighted Resistor D/A Converter 217(1)
The R/2R D/A Converter 218(1)
The Sigma Delta D/A Converter 219(1)
D/A Converter Error Budget 220(4)
Accuracy versus Resolution 221(1)
DC Application Error Budget 221(1)
AC Application Error Budget 222(2)
RF Application Error Budget 224(1)
D/A Converter Errors and Parameters 224(8)
DC Errors and Parameters 224(4)
AC Application Errors and Parameters 228(4)
Compensating For DAC Capacitance 232(1)
Increasing Op Amp Buffer Amplifier 233(6)
Current and Voltage
Current Boosters 234(1)
Voltage Boosters 234(2)
Power Boosters 236(1)
Single-Supply Operation and DC Offsets 236(3)
Sine Wave Oscillators 239(22)
What is a Sine Wave Oscillator? 239(1)
Requirements for Oscillation 239(2)
Phase Shift in the Oscillator 241(1)
Gain in the Oscillator 242(1)
Active Element (Op Amp) Impact on the 243(2)
Oscillator
Analysis of the Oscillator Operation 245(2)
(Circuit)
Sine Wave Oscillator Circuits 247(12)
Wien Bridge Oscillator 247(5)
Phase Shift Oscillator, Single Amplifier 252(1)
Phase Shift Oscillator, Buffered 252(3)
Bubba Oscillator 255(1)
Quadrature Oscillator 256(2)
Conclusion 258(1)
References 259(2)
Active Filter Design Techniques 261(64)
Introduction 261(1)
Fundamentals of Low-Pass Filters 262(9)
Butterworth Low-Pass Filters 266(1)
Tschebyscheff Low-Pass Filters 267(1)
Bessel Low-Pass Filters 267(2)
Quality Factor Q 269(1)
Summary 270(1)
Low-Pass Filter Design 271(10)
First-Order Low-Pass Filter 272(2)
Second-Order Low-Pass Filter 274(5)
Higher-Order Low-Pass Filters 279(2)
High-Pass Filter Design 281(6)
First-Order High-Pass Filter 283(1)
Second-Order High-Pass Filter 284(2)
Higher-Order High-Pass Filter 286(1)
Band-Pass Filter Design 287(9)
Second-Order Band-Pass Filter 289(3)
Fourth-Order Band-Pass Filter 292(4)
(Staggered Tuning)
Band-Rejection Filter Design 296(5)
Active Twin-T Filter 297(2)
Active Wien-Robinson Filter 299(2)
All-Pass Filter Design 301(6)
First-Order All-Pass Filter 304(1)
Second-Order All-Pass Filter 304(1)
Higher-Order All-Pass Filter 305(2)
Practical Design Hints 307(8)
Filter Circuit Biasing 307(3)
Capacitor Selection 310(2)
Component Values 312(1)
Op Amp Selection 313(2)
Filter Coefficient Tables 315(8)
References 323(2)
Circuit Board Layout Techniques 325(30)
General Considerations 325(2)
The PCB is a Component of the Op Amp 325(1)
Design
Prototype, Prototype, PROTOTYPE! 325(1)
Noise Sources 326(1)
PCB Mechanical Construction 327(4)
Materials --- Choosing the Right One 327(1)
for the Application
How Many Layers are Best? 328(2)
Board Stack-Up --- The Order of Layers 330(1)
Grounding 331(4)
The Most Important Rule: Keep Grounds 331(1)
Separate
Other Ground Rules 331(2)
A Good Example 333(1)
A Notable Exception 334(1)
The Frequency Characteristics of Passive 335(9)
Components
Resistors 335(1)
Capacitors 336(1)
Inductors 337(1)
Unexpected PCB Passive Components 338(6)
Decoupling 344(3)
Digital Circuitry --- A Major Problem 344(1)
for Analog Circuitry
Choosing the Right Capacitor 345(1)
Decoupling at the IC Level 346(1)
Decoupling at the Board Level 347(1)
Input and Output Isolation 347(1)
Packages 348(4)
Through-Hole Considerations 350(1)
Surface Mount 351(1)
Unused Sections 351(1)
Summary 352(1)
General 352(1)
Board Structure 352(1)
Components 352(1)
Routing 353(1)
Bypass 353(1)
References 353(2)
Designing Low-Voltage Op Amp Circuits 355
Introduction 355(2)
Dynamic Range 357(2)
Signal-to-Noise Ratio 359(1)
Input Common-Mode Range 360(5)
Output Voltage Swing 365(1)
Shutdown and Low Current Drain 366(1)
Single-Supply Circuit Design 367(1)
Transducer to ADC Analog Interface 367(3)
DAC to Actuator Analog Interface 370(4)
Comparison of Op Amps 374(2)
Summary 376
A Single-Supply Circuit Collection 1
Introduction 3
Boundary Conditions 1
Amplifiers 1
Inverting Op Amp with Noninverting 1
Positive Reference
Inverting Op Amp with Inverting 1
Negative Reference
Inverting Op Amp with Noninverting 1
Negative Reference
Inverting Op Amp with Inverting 1
Positive Reference
Noninverting Op Amp with Inverting 1
Positive Reference
Noninverting Op Amp with Noninverting 1
Negative Reference
Noninverting Op Amp with Inverting 1
Negative Reference
Noninverting Op Amp with Noninverting 1
Positive Reference
Differential Amplifier 1
Differential Amplifier With Bias 1
Correction
High Input Impedance Differential 1
Amplifier
High Common-Mode Range Differential 1
Amplifier
High-Precision Differential Amplifier 1
Simplified High-Precision Differential 1
Amplifier
Variable Gain Differential Amplifier 1
T Network in the Feedback Loop 1
Buffer 1
Inverting AC Amplifier 1
Noninverting AC Amplifier 1
Computing Circuits 1
Inverting Summer 1
Noninverting Summer 1
Noninverting Summer with Buffers 1
Inverting Integrator 1
Inverting Integrator with Input Current 1
Compensation
Inverting Integrator with Drift 1
Compensation
Inverting Integrator with Mechanical 1
Reset
Inverting Integrator with Electronic 1
Reset
Inverting Integrator with Resistive 1
Reset
Noninverting Integrator with Inverting 1
Buffer
Noninverting Integrator Approximation 1
Inverting Differentiator 2
Inverting Differentiator with Noise 1
Filter
Oscillators 1
Basic Wien Bridge Oscillator 1
Wien Bridge Oscillator with Nonlinear 1
Feedback
Wien Bridge Oscillator with AGC 1
Quadrature Oscillator 1
Classical Phase Shift Oscillator 1
Buffered Phase Shift Oscillator 1
Bubba Oscillator 1
Triangle Oscillator 44
B Single-Supply Op Amp Selection Guide 1