Next Generation Photovoltaics : High Efficiency through Full Spectrum Utilization (Series in Optics and Optoelectronics)

個数:

Next Generation Photovoltaics : High Efficiency through Full Spectrum Utilization (Series in Optics and Optoelectronics)

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9780750309059
  • DDC分類 535

Full Description


Although photovoltaics are regarded by many as the most likely candidate for long term sustainable energy production, their implementation has been restricted by the high costs involved. Nevertheless, the theoretical limit on photovoltaic energy conversion efficiency-above 85%-suggests that there is room for substantial improvement of current commercially available solar cells, both silicon and thin-film based. Current research efforts are focused on implementing novel concepts to produce a new generation of low-cost, high-performance photovoltaics that make improved use of the solar spectrum.Featuring contributions from pioneers of next generation photovoltaic research, Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization presents a comprehensive account of the current state-of-the-art in all aspects of the field. The book first discusses topics, such as multi-junction solar cells (the method closest to commercialization), quantum dot solar cells, hot carrier solar cells, multiple quantum well solar cells, and thermophotovoltaics. The final two chapters of the book consider the materials, fabrication methods, and concentrator optics used for advanced photovoltaic cells. This book will be an essential reference for graduate students and researchers working with solar cell technology.

Table of Contents

Preface                                            xi
1 Non-conventional photovoltaic technology: a
need to reach goals
Antonio Luque and Antonio Marti 1 (18)
1.1 Introduction 1 (1)
1.2 On the motivation for solar energy 2 (5)
1.3 Penetration goals for PV electricity 7 (2)
1.4 Will PV electricity reach costs 9 (5)
sufficiently low to permit a wide
penetration?
1.5 The need for a technological 14 (3)
breakthrough
1.6 Conclusions 17 (1)
References 18 (1)
2 Trends in the development of solar
photovoltaics
Zh I Alferov and V D Rumyantsev 19 (31)
2.1 Introduction 19 (1)
2.2 Starting period 20 (1)
2.3 Simple structures and simple 21 (2)
technologies
2.4 Nanostructures and 'high technologies' 23 (5)
2.5 Multi-junction solar cells 28 (6)
2.6 From the 'sky' to the Earth 34 (1)
2.7 Concentration of solar radiation 35 (8)
2.8 Concentrators in space 43 (1)
2.9 'Non-solar' photovoltaics 44 (3)
2.10 Conclusions 47 (1)
References 48 (2)
3 Thermodynamics of solar energy converters
Peter W fel 50 (14)
3.1 Introduction 50 (1)
3.2 Equilibria 50 (7)
3.2.1 Temperature equilibrium 51 (1)
3.2.2 Thermochemical equilibrium 52 (5)
3.3 Converting chemical energy into 57 (2)
electrical energy: the basic requirements
for a solar cell
3.4 Concepts for solar cells with ultra 59 (3)
high efficiencies
3.4.1 Thermophotovoltaic conversion 60 (1)
3.4.2 Hot carrier cell 60 (1)
3.4.3 Tandem cells 60 (1)
3.4.4 Intermediate level cells 61 (1)
3.4.5 Photon up- and down-conversion 61 (1)
3.5 Conclusions 62 (1)
References 63 (1)
4 Tandem cells for very high concentration
A W Bett 64 (27)
4.1 Introduction 64 (2)
4.2 Tandem solar cells 66 (11)
4.2.1 Mechanically stacked tandem cells 67 (5)
4.2.2 Monolithic tandem cells 72 (5)
4.2.3 Combined approach: mechanical 77 (1)
stacking of monolithic cells
4.3 Testing and application of monolithic 77 (8)
dual junction concentrator cells
4.3.1 Characterization of monolithic 77 (3)
concentrator solar cells
4.3.2 Fabrication and characterization of 80 (2)
a test module
4.3.3 FLATCON module 82 (1)
4.3.4 Concentrator system development 83 (2)
4.4 Summary and perspective 85 (2)
Acknowledgments 87 (1)
References 88 (3)
5 Quantum wells in photovoltaic cells
C Rohr, P Abbott, I M Ballard, D B Bushnell, 91 (17)
J P Connolly, N J Ekins-Daukes and K W J
Barnham
5.1 Introduction 91 (1)
5.2 Quantum well cells 91 (3)
5.3 Strain compensation 94 (2)
5.4 QWs in tandem cells 96 (1)
5.5 QWCs with light trapping 97 (2)
5.6 QWCs for thermophotovoltaics 99 (3)
5.7 Conclusions 102(1)
References 103(5)
6 The importance of the very high concentration
in third-generation solar cells
Carlos Algora 108(32)
6.1 Introduction 108(1)
6.2 Theory 109(11)
6.2.1 How concentration works on solar 109(3)
cell performance
6.2.2 Series resistance 112(3)
6.2.3 The effect of illuminating the cell 115(3)
with a wide-angle cone of light
6.2.4 Pending issues: modelling under 118(2)
real operation conditions
6.3 Present and future of concentrator 120(2)
third-generation solar cells
6.4 Economics 122(12)
6.4.1 How concentration affects solar 122(2)
cell cost
6.4.2 Required concentration level 124(2)
6.4.3 Cost analysis 126(8)
6.5 Summary and conclusions 134(2)
Note added in press 136(1)
References 136(4)
7 Intermediate-band solar cells
A Marti, L Cuadra and A Luque 140(25)
7.1 Introduction 140(2)
7.2 Preliminary concepts and definitions 142(6)
7.3 Intermediate-band solar cell: model 148(2)
7.4 The quantum-dot intermediate-band solar 150(5)
cell
7.5 Considerations for the practical 155(5)
implementation of the QD-IBSC
7.6 Summary 160(2)
Acknowledgments 162(1)
References 162(3)
8 Multi-interface novel devices: model with a
continuous substructure
Z T Kuznicki 165(31)
8.1 Introduction 165(2)
8.2 Novelties in Si optoelectronics and 167(2)
photovoltaics
8.2.1 Enhanced absorbance 168(1)
8.2.2 Enhanced conversion 168(1)
8.3 Active substructure and active 169(1)
interfaces
8.4 Active substructure by ion implantation 170(8)
8.4.1 Hetero-interface energy band offset 173(1)
8.4.2 Built-in electric field 174(2)
8.4.3 Built-in strain field 176(2)
8.4.4 Defects 178(1)
8.5 Model of multi-interface solar cells 178(11)
8.5.1 Collection efficiency and internal 181(1)
quantum efficiency
8.5.2 Generation rate 181(1)
8.5.3 Carrier collection limit 181(1)
8.5.4 Surface reservoir 182(1)
8.5.5 Collection zones 183(1)
8.5.6 Impurity band doping profile 184(1)
8.5.7 Uni- and bipolar electronic 184(2)
transport in a multi-interface emitter
8.5.8 Absorbance in presence of a dead 186(1)
zone
8.5.9 Self-consistent calculation 187(2)
8.6 An experimental test device 189(3)
8.6.1 Enhanced internal quantum efficiency 190(1)
8.6.2 Sample without any carrier 191(1)
collection limit (CCL)
8.7 Concluding remarks and perspectives 192(1)
Acknowledgments 193(1)
References 194(2)
9 Quantum dot solar cells
A J Nozik 196(27)
9.1 Introduction 196(3)
9.2 Relaxation dynamics of hot electrons 199(15)
9.2.1 Quantum wells and superlattices 201(5)
9.2.2 Relaxation dynamics of hot 206(8)
electrons in quantum dots
9.3 Quantum dot solar cell configuration 214(4)
9.3.1 Photoelectrodes composed of quantum 216(1)
dot arrays
9.3.2 Quantum dot-sensitized 216(1)
nanocrystalline TiO2 solar cells
9.3.3 Quantum dots dispersed in organic 217(1)
semiconductor polymer matrices
9.4 Conclusion 218(1)
Acknowledgments 218(1)
References 218(5)
10 Progress in thermophotovoltaic converters
Bernd Bitnar, Wilhelm Durisch, Fritz von 223(23)
Roth, G ther Palfinger, Hans Sigg, Detlev
Gr zmacher, Jens Gobrecht, Eva-Maria Meyer,
Ulrich Vogt, Andreas Meyer and Adolf Heeb
10.1 Introduction 223(1)
10.2 TPV based on III/V low-bandgap 224(1)
photocells
10.3 TPV in residential heating systems 225(2)
10.4 Progress in TPV with silicon photocells 227(8)
10.4.1 Design of the system and a 227(1)
description of the components
10.4.2 Small prototype and demonstration 228(2)
TPV system
10.4.3 Prototype heating furnace 230(1)
10.4.4 Foam ceramic emitters 231(4)
10.5 Design of a novel thin-film TPV system 235(8)
10.5.1 TPV with nanostructured SiGe 240(3)
photocells
10.6 Conclusion 243(1)
Acknowledgments 243(1)
References 243(3)
11 Solar cells for TPV converters
V M Andreev 246(28)
11.1 Introduction 246(1)
11.2 Predicted efficiency of TPV cells 247(4)
11.3 Germanium-based TPV cells 251(3)
11.4 Silicon-based solar PV cells for TPV 254(2)
applications
11.5 GaSb TPV cells 256(4)
11.6 TPV cells based on InAs- and 260(6)
GaSb-related materials
11.6.1 InGaAsSb/GaSb TPV cells 261(2)
11.6.2 Sub-bandgap photon reflection in 263(1)
InGaAsSb/GaSb TPV cells
11.6.3 Tandem GaSb/InGaAsSb TPV cells 263(1)
11.6.4 TPV cells based on low-bandgap 264(2)
InAsSbP/InAs
11.7 TPV cells based on InGaAs/InP 266(2)
heterostructures
11.8 Summary 268(1)
Acknowledgments 269(1)
References 269(5)
12 Wafer-bonding and film transfer for advanced
PV cells
C Jaussaud, E Jalaguier and D Mencaraglia 274(11)
12.1 Introduction 274(1)
12.2 wafer-bonding and transfer application 274(3)
to SOI structures
12.3 Other transfer processes 277(2)
12.4 Application of film transfer to III-V 279(4)
structures and PV cells
12.4.1 HEMT InAIAs/InGaAs transistors on 280(1)
films transferred onto Si
12.4.2 Multi-junction photovoltaic cells 281(1)
with wafer bonding using metals
12.4.3 Germanium layer transfer for 281(2)
photovoltaic applications
12.5 Conclusion 283(1)
References 283(2)
13 Concentrator optics for the next-generation
photovoltaics
P Benitez and J C Mi no 285(41)
13.1 Introduction 285(27)
13.1.1 Desired characteristics of PV 286(1)
concentrators
13.1.2 Concentration and acceptance angle 287(1)
13.1.3 Definitions of geometrical 288(2)
concentration and optical efficiency
13.1.4 The effective acceptance angle 290(6)
13.1.5 Non-uniform irradiance on the 296(9)
solar cell: How critical is it?
13.1.6 The PV design challenge 305(4)
13.1.7 Non-imaging optics: the best 309(3)
framework for concentrator design
13.2 Concentrator optics overview 312(7)
13.2.1 Classical concentrators 312(2)
13.2.2 The SMS PV concentrators 314(5)
13.3 Advanced research in non-imaging optics 319(1)
13.4 Summary 320(1)
Acknowledgments 321(1)
Appendix: Uniform distribution as the 321(1)
optimum illumination
References 322(4)
Appendix: Conclusions of the Third-generation 326(2)
PV workshop for high efficiency through full
spectrum utilization
Index 328