The Physical Measurement of Bone (Series in Medical Physics and Biomedical Engineering)

個数:

The Physical Measurement of Bone (Series in Medical Physics and Biomedical Engineering)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版/ページ数 300 p.
  • 言語 ENG
  • 商品コード 9780750308380
  • DDC分類 612.75

Full Description


Bone is a complex biological material that consists of both an inorganic and organic phase, which undergoes continuous dynamic biological processes within the body. This complex structure and the need to acquire accurate data have resulted in a wide variety of methods applied in the physical analysis of bone in vivo and in vitro. Each method has its own strengths and applications depending on the information sought by the clinician or researcher. The Physical Measurement of Bone provides a detailed description of all the major methods of bone analysis, including brief comments on clinical evaluation. The physics of each method are introduced as well as a summary of practical procedures. The book is essential reading for practicing medical physicists and technicians who need to know about the many methods of bone analysis open to them, and, more importantly, the wide coverage provides a good introductory framework for students of medical physics and biomedical engineering.

Table of Contents

LIST OF CONTRIBUTORS                               xxiii
PREFACE xxvi
SECTION 1 INTRODUCTION 1 (122)
1. ANATOMY, PHYSIOLOGY AND DISEASE 3 (32)
1.1. Introduction 3 (2)
1.2. Bone morphology and organization 5 (1)
1.3. Bone tissue I: the role of bone cells 6 (5)
1.3.1. The osteoclast 6 (3)
1.3.2. The osteoblast 9 (1)
1.3.3. The osteocytes 10 (1)
1.4. Bone tissue II: the bony matrix 11 (3)
1.5. Bone composition: mineralization of 14 (2)
bone matrix
1.6. Metabolic disorders of bone 16 (2)
1.6.1. Introduction 16 (2)
1.7. Osteoporosis 18 (8)
1.7.1. Introduction 18 (1)
1.7.2. Pathophysiology of osteoporosis 19 (2)
1.7.3. Etiologic factors in osteoporosis 21 (2)
1.7.4. Epidemiology 23 (3)
1.8. Summary 26 (1)
References 26 (9)
2. BIOLOGICAL SAFETY CONSIDERATIONS 35 (37)
2.1. Introduction 35 (1)
2.2. Duties and responsibilities 35 (2)
2.3. Environmental protection 37 (1)
2.4. Risk assessment 38 (1)
2.5. Quantifying risk 39 (1)
2.6. Acceptable risk 40 (1)
2.7. Risk reduction 40 (1)
2.8. Hierarchy of risk reduction 40 (1)
2.9. Specific risks associated with the 41 (1)
processing of bone
2.9.1. Hazard identification 41 (1)
2.10. Mechanical hazards 41 (4)
2.10.1. Sawing bone 43 (1)
2.10.2. Electrical hazards 44 (1)
2.10.3. Chemical hazards 45 (1)
2.11. Hazard identification 45 (4)
2.11.1. Toxicity hazard 45 (1)
2.11.2. Corrosive hazards 46 (1)
2.11.3. Exposure limits 46 (1)
2.11.4. Reactive hazards 47 (1)
2.11.5. Flammability hazards 48 (1)
2.12. Extinguishers 49 (1)
2.13. Risk reduction and control: chemicals 50 (2)
2.13.1. Fume cupboards 50 (1)
2.13.2. Biological hazards 51 (1)
2.14. Hazard categories of biological agents 52 (1)
2.15. Hazard identification and hazard 52 (1)
reduction at source
2.15.1. For human bone 52 (1)
2.15.2. For animal bone 53 (1)
2.16. Prion diseases 53 (1)
2.17. Biological control measures 54 (7)
2.17.1. Allergens: control of exposure 55 (1)
2.17.2. Microbiological safety cabinets 55 (1)
2.17.3. Disinfectants 56 (1)
2.17.4. Disinfection of cryostats 57 (1)
2.17.5. Fumigation 57 (1)
2.17.6. Disinfection of mechanical 58 (1)
testing equipment and machine tools
2.17.7. Autoclaves 59 (1)
2.17.8. Disposal of biological waste 60 (1)
2.17.9. Removal of equipment 61 (1)
2.18. Use of personal protective equipment 61 (1)
2.19. General managerial considerations 62 (2)
2.19.1. Restricted access and permits to 63 (1)
work
2.19.2. Occupational health screening 63 (1)
2.19.3. Prophylactic treatment 64 (1)
2.20. Contents of a risk assessment 64 (3)
2.20.1. Conveying the information to 66 (1)
personnel
2.20.2. Who should compile a risk 67 (1)
assessment?
2.21. Transport, packaging and labelling of 67 (2)
biological samples
2.22 Ionizing and non-ionizing radiation 69 (1)
2.22.1. Ultraviolet light sources and 69 (1)
lasers
2.22.2. Genetic modification 69 (1)
References 70 (2)
3. RADIATION SAFETY CONSIDERATIONS 72 (19)
3.1. Introduction 72 (5)
3.1.1. Units of radiation measurement 73 (2)
3.1.2. Radiation detector 75 (2)
3.2. Radiation dose to the patient 77 (7)
3.2.1. Introduction 77 (1)
3.2.2. Patient doses from dual X-ray 77 (2)
absorptiometry
3.2.3. Patient doses from fan beam DXA 79 (1)
3.2.4. Doses from vertebral morphometry 80 (1)
using DXA
3.2.5. Paediatric doses from DXA 81 (1)
3.2.6. Patient doses from QCT 82 (2)
3.2.7. Patient dose from other techniques 84 (1)
3.3. Staff dose from DXA 84 (2)
3.4. Staff dose from other techniques 86 (1)
3.5. Reduction of occupational dose 86 (1)
3.6. Dose reduction techniques in DXA 86 (1)
applications
3.7. Problems with measuring patient and 87 (1)
staff dose from absorptiometric techniques
3.8. Conclusion 88 (1)
References 88 (3)
4. INSTRUMENT EVALUATION 91 (32)
4.1. Introduction 91 (1)
4.2. Measurement errors 91 (3)
4.2.1. Types of measurement error 92 (2)
4.3. Equipment validation 94 (9)
4.3.1. Precision 94 (5)
4.3.2. Accuracy 99 (2)
4.3.3. When are two measurements 101 (2)
significantly different?
4.4. Statistical methods in equipment 103 (10)
validation
4.4.1 Method-comparison studies 103 (1)
4.4.2. Bland and Altman plot 104 (4)
4.4.3. Regression analysis and 108 (2)
correlations
4.4.4. Clinical evaluation of a new device 110 (3)
4.5. Quality assurance (QA) 113 (7)
4.5.1. Introduction 113 (2)
4.5.2. Tools for QA 115 (5)
References 120 (3)
SECTION 2 INVASIVE TECHNIQUES 123 (142)
5. MECHANICAL TESTING 125 (60)
5.1. Introduction 125 (11)
5.1.1. Bone 125 (2)
5.1.2. Bone structure 127 (2)
5.1.3. Why study the mechanical 129 (1)
properties of bone?
5.1.4. Basic concepts in bone mechanics 130 (6)
and definition of terms
5.2. Equipment and specimen consideration 136 (3)
5.2.1. Equipment 136 (1)
5.2.2. Specimen handling 137 (2)
5.3. Methods of measuring the mechanical 139 (14)
properties of bone tissue
5.3.1. Uniaxial compressive test 139 (2)
5.3.2. Uniaxial tensile test 141 (3)
5.3.3. Bending test 144 (2)
5.3.4. Torsion test 146 (1)
5.3.5. Fatigue 147 (1)
5.3.6. Indentation/hardness tests 148 (1)
5.3.7. Ultrasound 149 (3)
5.3.8. Conclusion 152 (1)
5.4. Methods of measuring the mechanical 153 (8)
properties of the trabeculae
5.4.1. Microhardness 154 (1)
5.4.2. Nano-indentation 154 (5)
5.4.3. Buckling 159 (1)
5.4.4. Ultrasound technique 159 (1)
5.4.5. Other techniques 159 (2)
5.4.6. Conclusions 161 (1)
5.5. Factors Influencing the Mechanical 161 (5)
Properties of Bone
5.5.1. Specimen configuration 162 (1)
5.5.2. Specimen preservation 163 (1)
5.5.3. Bone hydration 163 (1)
5.5.4. Sterilization 163 (1)
5.5.5. Strain rate 164 (1)
5.5.6. Age and disease 165 (1)
5.5.7. Temperature 166 (1)
5.5.8. Miscellaneous 166 (1)
5.6. Mechanical properties of bone 166 (8)
5.6.1. Introduction 166 (1)
5.6.2. Mechanical properties of 167 (5)
cancellous bone
5.6.3. Mechanical properties of cortical 172 (2)
bone
References 174 (11)
6. HISTOMORPHOMETRY 185 (40)
6.1. Introduction 185 (1)
Section A: Microarchitecture using 186 (21)
computerized and manual techniques
6.2. Trabecular architecture 188 (1)
non-invasive, non-destructive
6.3. Trabecular architecture 189 (2)
two-dimensional histology
6.4. The trabecular analysis system (TAS) 191 (10)
6.5. Trabecular architecture 201 (13)
three-dimensional image
6.5.1. Serial section techniques 202 (2)
6.5.2. Thick slice technique 204 (3)
Section B: Microfracture and microcallus 207 (7)
Section C: Matrix remodelling 214 (6)
6.6. Computer-assisted histomorphometry 214 (5)
6.6.1. The OsteoMeasure system 214 (4)
6.6.2. Tetracycline labelling and 218 (1)
staining of the calcification front
6.7. Acknowledgments 219 (1)
References 220 (5)
7. MICROSCOPY AND RELATED TECHNIQUES 225 (40)
7.1. Introduction 225 (3)
Section A: Molecular labelling 228 (11)
7.2. Radioisotope-labelling of 228 (2)
bone-autoradiography
7.3. Cryomicrotomy, bone histology and 230 (8)
Immunohistochemistry
7.3.1. Immunohistochemistry 230 (4)
7.3.2. Immunohistochemistry of the 234 (2)
extracellular matrix
7.3.3. Immunohistochemistry and 236 (1)
colloidal gold labelling
7.3.4. In situ hybridization 237 (1)
7.4. Laser confocal microscopy 238 (1)
Section B: Mineral microanalysis and 239 (22)
morphology
7.5. Mineral density 240 (1)
7.5.1. Ashing and volume displacement 240 (1)
7.5.2. Density gradient fractionation 240 (1)
of powdered bone
7.6. Mineral Microanalysis 241 (7)
7.6.1. Microradiography 241 (2)
7.6.2. Backscattered electron image 243 (1)
analysis
7.6.3. Electron probe X-ray 244 (4)
microanalysis (by specialist Dr Roger C
Shore)
7.7. Mineral morphology 248 (13)
7.7.1. Scanning electron microscopy 248 (1)
7.7.2. High velocity impact ('slam') 249 (8)
freezing
7.7.3. Atomic and chemical force 257 (4)
microscopy (by specialist Prof.
Jennifer Kirkham)
7.8 Acknowledgments 261 (1)
References 261 (4)
SECTION 3 IONIZING RADIATION TECHNIQUES 265 (112)
8. ABSORPTIOMETRIC MEASUREMENT 267 (41)
8.1. Introduction 267 (1)
Section A: Fundamental principles of 267 (10)
radiation physics
8.2. Fundamentals of radiation physics 267 (5)
8.2.1. γ-rays 269 (1)
8.2.2. X-rays 270 (1)
8.2.3. Inverse square law 271 (1)
8.3. Interaction of X-rays and 272 (5)
γ-rays with matter
8.3.1. Introduction 272 (2)
8.3.2. Interaction mechanism 274 (2)
8.3.3. Attenuation in tissue 276 (1)
Section B: Instrumentation and principles 277 (12)
8.4. Generation of X-ray 277 (4)
8.4.1. Introduction 277 (1)
8.4.2. X-ray spectrum 278 (1)
8.4.3. Factors affecting the X-ray 279 (2)
spectrum
8.5. Physical principles of absorptiometry 281 (8)
8.5.1. Single energy (γ-ray or 281 (2)
X-ray) absorptiometry
8.5.2. Dual energy absorptiometry 283 (3)
8.5.3. Implementation of DXA 286 (3)
Section C: Clinical applications 289 (15)
8.6. Sites measured 289 (8)
8.6.1. Lumbar spine 289 (2)
8.6.2. Lateral spine 291 (2)
8.6.3. Proximal femur 293 (1)
8.6.4. Peripheral sites 294 (1)
8.6.5. Total body and body composition 295 (1)
8.6.6. Vertebral morphometry 296 (1)
8.7. Radiation dose to the patient 297 (1)
8.8. Sources of in vivo measurement error 297 (5)
8.8.1. Accuracy 298 (1)
8.8.2. Precision 298 (2)
8.8.3. Other error sources 300 (2)
8.9. Quality assurance and quality control 302 (37)
8.9.1. Quality assurance 302 (1)
8.9.2. Cross calibration 302 (2)
References 304 (4)
9. QUANTITATIVE COMPUTED TOMOGRAPHY 308 (11)
9.1. Introduction 308 (2)
9.2. Single-slice spinal bone funeral 310 (1)
density measurement
9.3. Physical signilicance of QCT 311 (2)
measurements
9.4. Measurement of BMD using volumetric CT 313 (3)
images of the spine and hip
References 316 (3)
10. PERIPHERAL QUANTITATIVE COMPUTED 319 (1)
TOMOGRAPHY AND MICRO-COMPUTED TOMOGRAPHY
10.1. Introduction 319 (1)
10.2. Development of pQCT 319 (2)
10.3. pQCT machine description 321 (2)
10.4. Bone properties and variables 323 (3)
measured by pQCT
10.5. pQCT accuracy and precision for bone 326 (1)
mineral and bone geometry assessments
10.6. Clinical utility of pQCT 327 (1)
10.7. Use of pQCT in pre-clinical testing 328 (1)
10.8. Introduction to μCT 329 (2)
10.9. What can be measured with μCT? 331 (1)
10.10. Summary 332 (1)
References 333 (4)
11. RADIOGRAMMETRY 337 (1)
11.1. Overview 337 (1)
11.2. Introduction 337 (2)
Section A: Fundamental principles of 339 (6)
radiogrammetry
11.3. Basic one-dimensional 339 (1)
radiogrammetric measurements from
two-dimensional planar images
11.4. The cortical index 340 (1)
11.5. Precision of basic one-dimensional 341 (1)
radiogrammetry measurement
11.6. Extending radiogrammetry from 341 (1)
one-dimensional to two-dimensional
measurement
11.7. Conversion of two-dimensional 342 (1)
radiogrammetric measurements to bone
volume per area
11.8. Conversion of calculated bone 343 (1)
volume to bone mineral density (BMD)
11.9. Extending radiogrammetry to 344 (1)
two-dimensional areas and
three-dimensional volumes from
two-dimensional cross-sectional slices
11.10. Extending radiogrammetry from 345 (1)
two-dimensional slice measurement to true
three-dimensional
Section B: Limiting factors in 345 (4)
radiogrammetry
11.11. Image sharpness and image geometry 345 (4)
Section C: The clinical application of 349 (5)
radiogrammetry
11.12. Implementing a new radiogrammetry 349 (1)
technique in a clinical setting
11.13. Choosing an appropriate target 349 (1)
condition
11.14. Choosing the target bone 350 (1)
11.15. Choosing the modality 350 (1)
11.16. Establishing the image geometry 351 (1)
11.17. Choosing the means of measurement 352 (1)
11.18. The need for comparative reference 353 (1)
11.19. Measurement validity 353 (1)
11.20. Further research opportunities in 353 (1)
radiogrammetry
References 354 (1)
12. IN VIVO NEUTRON ACTIVATION ANALYSIS AND 355 (1)
PHOTON SCATTERING
12.1. Introduction 355 (1)
12.2. In vivo neutron activation analysis 356 (7)
(IVNAA)
12.2.1. Delayed gamma techniques 357 (5)
12.2.2. Prompt gamma techniques 362 (1)
12.2.3. Clinical applications and 362 (1)
conclusion
12.3. Photon scattering methodologies in 363 (10)
measurement of bone density
12.3.1. Theory 365 (1)
12.3.2. Techniques 366 (7)
12.3.3. Conclusions 373 (1)
References 373 (4)
SECTION 4 NON-IONIZING TECHNIQUES 377 (1)
13. MAGNETIC RESONANCE IMAGING 379 (222)
13.1. Introduction 379 (2)
13.2. Quantitative magnetic resonance (QMR) 381 (5)
13.3. Imaging of trabecular bone structure 386 (18)
13.3.1. In vitro studies 388 (5)
13.3.2. Animal models 393 (2)
13.3.3. In vivo human studies 395 (9)
13.4. Conclusion 404 (1)
13.5. Acknowledgment 405 (1)
References 405 (7)
14. QUANTITATIVE ULTRASOUND 412 (1)
Section A: Fundamentals of ultrasound 412 (10)
propagation
14.1. Terminology 412 (2)
14.1.1. Ultrasound 412 (1)
14.1.2. Pregnancy 412 (2)
14.2. Ultrasound propagagion through 414 (3)
materials
14.2.1. Spring model propagation 414 (1)
14.2.2. Modes of wave propagation 414 (2)
14.2.3. Velocity of ultrasound waves 416 (1)
14.2.4. Propagation velocity dependence 416 (1)
14.2.5. Phase and group velocity 416 (1)
14.3. Amplitude, intensity and attenuation 417 (1)
14.3.1. Amplitude and intensity 417 (1)
14.3.2. Attenuation 417 (1)
14.3.3. Broadband ultrasound attenuation 417 (1)
14.4. Interface behaviour 418 (2)
14.4.1. Acoustic impedance 418 (1)
14.4.2. Normal incidence at a tissue 418 (1)
interface
14.4.3. Non-normal incidence at a 419 (1)
tissue interface
14.4.4. Coupling 420 (1)
14.5. Ultrasound wave formats 420 (2)
14.5.1. Continuous, tone-burst and 420 (1)
pulsed waves
14.5.2. Bandwidth theorem 421 (1)
14.5.3. Frequency spectrum and Q factor 422 (1)
Section B: Instrumentation 422 (11)
14.6. The ultrasound transducer and beam 422 (3)
profile
14.6.1. Piezoelectric effect and 422 (1)
transducer
14.6.2. Transducer design 423 (1)
14.6.3. Beam profile 424 (1)
14.6.4. Focusing 425 (1)
14.7. Instrumentation 425 (8)
14.7.1 Pulse-echo technique 425 (2)
14.7.2. Transmission technique 427 (1)
14.7.3. Simple radio-frequency (RF) 427 (2)
system
14.7.4. Integrated pulse-echo system 429 (2)
14.7.5. Rectilinear scanning 431 (2)
14.7.6. Backscattering analysis 433 (1)
Section C: Theoretical modelling 433 (1)
14.8. Biot theory 433 (1)
14.9. Schoenberg's theory 434 (1)
14.10 Other models 434 (1)
Section D: In vitro experiments 434 (14)
14.11. Bone samples 434 (1)
14.11.1. Source 434 (1)
14.11.2. Sample size and shape 434 (1)
14.11.3. Sample preparation 435 (1)
14.12. Measurement: methodology and 435 (9)
analysis
14.12.1. Coupling 435 (1)
14.12.2. Transducers 436 (1)
14.12.3. Transit time velocity 436 (1)
measurements
14.12.4. Alternative velocity 437 (1)
measurements
14.12.5. Critical angle reflectometry 438 (1)
14.12.6. Attenuation 438 (1)
14.12.7. Error sources 438 (6)
14.13. In vitro experimental findings 444 (4)
14.13.1. QUS and bone density 444 (1)
14.13.2. QUS and mechanical properties 445 (1)
14.13.3. QUS and bone structure 446 (2)
Section E: In vivo clinical assessment 448 (16)
14.14. Commercial systems 448 (10)
14.14.1. Anatomical sites 448 (3)
14.14.2. Methodology: coupling 451 (1)
14.14.3. Methodology: measurement 452 (3)
variables
14.14.4. Quality assurance 455 (1)
14.14.5. Cross-calibration 455 (2)
14.14.6. Artefacts and sources of errors 457 (1)
14.15. In vivo application of ultrasound 458 (17)
14.15.1. In vivo studies 458 (1)
14.15.2. In vivo QUS measurement 459 (1)
14.15.3. Age-related change 459 (1)
14.15.4. Velocity diagnostic sensitivity 460 (1)
14.15.5. BUA diagnostic sensitivity 461 (1)
14.15.6. QUS and longitudinal monitoring 462 (1)
14.15.7. Paediatric application 463 (1)
14.15.8. Application to rheumatoid 463 (1)
arthritis
References 464 (11)
15 FINITE ELEMENT MODELLING 475 (1)
15.1. Introduction 475 (1)
Section A: Finite element analysis of bone: 475 (6)
general considerations
15.2. Fundamentals of FE analysis 475 (1)
15.3. FE analysis applied to bone 476 (3)
15.3.1. Structural and solid mechanics 476 (2)
FE analysis
15.3.2. Poroelastic FE analysis 478 (1)
15.3.3. Other types of FE analysis 478 (1)
15.4. Generation of FE models 479 (2)
15.5. Equipment and software 481 (1)
Section B: Bone mechanical characterization 481 (7)
and fe modelling at different levels of
structural organization
15.6. The whole bone (apparent) level 482 (3)
15.6.1. Structural characterization 482 (1)
15.6.2. Mechanical characterization 483 (1)
15.6.3. FE modelling 484 (1)
15.7. The trabecular bone level 485 (2)
15.7.1. Structural characterization 485 (1)
15.7.2. Mechanical characterization 485 (1)
15.7.3. FE modelling 485 (2)
15.8. Bone tissue and ultrastructural 487 (1)
level
15.8.1. Structural characterization 487 (1)
15.8.2. Mechanical characterization 487 (1)
15.8.3. FE modelling 487 (1)
Section C: FE analysis of bone and bones at 488 (8)
the organ level: contemporary applications
and results
15.9. Analysis of bone mechanical 488 (4)
properties and loading
15.9.1. Bone failure load 488 (1)
15.9.2. Bone fracture healing and 489 (1)
tissue differentiation analysis
15.9.3. Consequences of orthopaedic 490 (2)
implants and interventions
15.10. Clinical assessment of bone 492 (1)
mechanical properties
15.11. Simulation of mechanically induced 492 (4)
biological processes
15.11.1. Bone remodelling 493 (2)
15.11.2. Tissue differentiation and 495 (1)
fracture healing
Section D: FE analysis at the bone 496 (7)
trabecular level: recent applications and
results
15.12. Analysis of bone mechanical 496 (3)
properties and loading
15.12.1. Elastic properties 496 (1)
15.12.2. Strength and yield properties 497 (1)
15.12.3. Assessment of physiological 498 (1)
bone tissue loading
15.13. Clinical assessment of bone 499 (1)
mechanical properties
15.14. Simulation of mechanically induced 500 (2)
biological processes
15.14.1. Bone remodelling 500 (2)
15.15. Summarizing conclusion 502 (1)
References 503 (8)
16 VIBRATION ANALYSIS 511 (1)
Section A: Introduction 511 (2)
16.1. Condition monitoring of machinery 511 (1)
16.2. Modal analysis 512 (1)
16.3. Non-destructive testing 512 (1)
16.3.1. Transverse (flexural) vibration 512 (1)
methodology
16.4. Vibrational measurements applied to 513 (1)
bone
Section B: Material properties of whole 513 (17)
long bones
16.5. Frequency response measurements 513 (8)
16.5.1. Early studies 513 (2)
16.5.2. Impulse frequency response 515 (1)
(IFR) technique
16.5.3. Bone resonance analysis (BRA) 516 (1)
technique
16.5.4. Comparison of IFR and BRA 517 (1)
techniques
16.5.5. Mechanical response tissue 518 (2)
analysis (MRTA)
16.5.6. Effect of soft tissue on 520 (1)
frequency
16.6. Longitudinal wave propagation 521 (3)
16.6.1. One-point method 522 (1)
16.6.2. Two-point method 523 (1)
16.7. Association of resonant frequency 524 (1)
with torsional and bending stiffness
16.8. Use of vibration to monitor 525 (1)
treatment effect
16.9. Vibration modelling studies 526 (4)
16.9.1. Ulnar model 526 (1)
16.9.2. Tibia model 527 (2)
16.9.3. Femur model 529 (1)
16.10. Summary 530 (1)
Section C: The use of vibration in the 530 (11)
monitoring of fracture healing
16.11. Introduction 530 (1)
16.12. Low frequency wave propagation 531 (3)
16.12.1. Propagation and measurement of 531 (1)
low frequency waves ('stress waves')
16.12.2. In vitro results 532 (1)
16.12.3. In vivo results 533 (1)
16.13. Resonant frequency measurement 534 (5)
16.13.1. Swept sinusoidal vibration 534 (1)
16.13.2. Impulse-response method 535 (4)
16.14. Modelling of the effect of healing 539 (1)
16.15. Other measurements 540 (1)
16.16. Summary 541 (1)
Section D: The use of vibration in the 541 (2)
diagnosis of prosthesis loosening
16.17. Summary 543 (1)
References 543 (8)
17 HUMAN STUDIES 551 (1)
17.1. Introduction 551 (1)
Section A: Presentation of BMD 551 (5)
17.2. Units of measure 551 (2)
17.3. Reference population 553 (1)
17.4. T-scores 553 (1)
17.5. Z-scores 554 (2)
Section B: Interpretation of BMD Results 556 (3)
17.6. WHO criteria 556 (1)
17.7. Limitations of WHO criteria 556 (1)
17.8. NOF recommendations 557 (1)
17.9. Fracture risk assessment 558 (1)
Section C: Utility of BMD 559 (3)
17.10. Who should be tested? 559 (1)
17.11. How to apply BMD 560 (1)
17.12. Diagnostic algorithms 561 (1)
Section D: Which Site to Measure 562 (2)
17.13. Available sites 562 (1)
17.14. Limitations 563 (1)
17.15. Combining sites to increase 563 (1)
diagnostic power
Section E: Treatment Considerations 564 (1)
Section F: Measurement errors 565 (2)
17.16. Conclusions 567 (1)
References 567 (4)
18 ANIMAL STUDIES 571 (1)
18.1. Introduction 571 (1)
18.2. Animals models 571 (4)
18.2.1. Introduction 571 (1)
18.2.2. Modelling osteoporosis in animals 572 (1)
18.2.3. Rat as a model for osteoporosis 573 (1)
18.2.4. Sheep as a model of osteoporosis 574 (1)
18.3. Bone status measurements 575 (1)
18.3.1. Introduction 575 (1)
18.3.2. Bone density 575 (1)
18.3.3. Bone structure 575 (1)
18.3.4. Bone biomechanical properties 576 (1)
18.4. Techniques for measuring bone density 576 (2)
18.4.1. Dual X-ray absorptiometry (DXA) 576 (1)
18.4.2. Peripheral dual X-ray 577 (1)
absorptiometry
18.4.3. Peripheral quantitative computed 578 (1)
tomography (pQCT)
18.5. Techniques for measuring bone 578 (13)
structure
18.5.1. Introduction 578 (1)
18.5.2. Radiography, microradiography and 579 (2)
radiogrammetry
18.5.3. Peripheral quantitative computed 581 (1)
tomography (pQCT)
18.5.4. Micro-computed tomography (μCT) 582 (2)
18.5.5. Synchrotron radiation μCT 584 (1)
18.5.6. μCT three-dimensional 585 (2)
assessment
18.5.7. Magnetic resonance imaging (MRJ) 587 (3)
microscopy
18.5.8. Histomorphometry 590 (1)
18.6. Bone strength measurement 591 (1)
18.7. Summary and perspectives 592 (2)
References 594 (7)
INDEX 601