『ピタゴラスの定理:4000年の歴史』(原書)<br>The Pythagorean Theorem : A 4,000-Year History (Princeton Science Library) (Reprint)

個数:

『ピタゴラスの定理:4000年の歴史』(原書)
The Pythagorean Theorem : A 4,000-Year History (Princeton Science Library) (Reprint)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 259 p./サイズ 8 color illus., 141 line illus.
  • 言語 ENG,ENG
  • 商品コード 9780691148236
  • DDC分類 516

基本説明

邦訳・岩波書店 2008年2月出版。ピタゴラスの定理に焦点を当てながら、古代バビロニアから現代に至るまで、数学の発展とそれが文化に与えた影響を跡づけようとする数学歴史物語。著者は『不思議な数eの物語』のE.マオール。邦訳:2010年・白楊社。
New in paperback. Hardcover was published in 2007. Classic math paradoxes and their surprising proofs. Honorable Mention, 2007 award for best professional/scholary book in mathematics, association of American Publishers. Eli Maor reveals the full story of this ubiquitous geometric theorem.

Full Description


By any measure, the Pythagorean theorem is the most famous statement in all of mathematics. In this book, Eli Maor reveals the full story of this ubiquitous geometric theorem. Maor shows that the theorem, although attributed to Pythagoras, was known to the Babylonians more than a thousand years earlier. Pythagoras may have been the first to prove it, but his proof - if indeed he had one - is lost to us. The theorem itself, however, is central to almost every branch of science, pure or applied. Maor brings to life many of the characters that played a role in the development of the Pythagorean theorem, providing a fascinating backdrop to perhaps our oldest enduring mathematical legacy.

Table of Contents

        List of Color Plates                       ix
Preface xi
Prologue: Cambridge, England, 1993 1 (3)
1 Mesopotamia, 1800 BCE 4 (13)
Sidebar 1 Did the Egyptians Know It? 13 (4)
2 Pythagoras 17 (15)
3 Euclid's Elements 32 (18)
Sidebar 2 The Pythagorean Theorem in Art, 45 (5)
Poetry, and Prose
4 Archimedes 50 (7)
5 Translators and Commentators, 500-1500 CE 57 (19)
6 Francois Viete Makes History 76 (6)
7 From the Infinite to the Infinitesimal 82 (16)
Sidebar 3 A Remarkable Formula by Euler 94 (4)
8 371 Proofs, and Then Some 98 (25)
Sidebar 4 The Folding Bag 115(2)
Sidebar 5 Einstein Meets Pythagoras 117(2)
Sidebar 6 A Most Unusual Proof 119(4)
9 A Theme and Variations 123(22)
Sidebar 7 A Pythagorean Curiosity 140(2)
Sidebar 8 A Case of Overuse 142(3)
10 Strange Coordinates 145(13)
11 Notation, Notation, Notation 158(10)
12 From Flat Space to Curved Spacetime 168(13)
Sidebar 9 A Case of Misuse 177(4)
13 Prelude to Relativity 181(7)
14 From Bern to Berlin, 1905-1915 188(13)
Sidebar 10 Four Pythagorean Brainteasers 197(4)
15 But Is It Universal? 201(7)
16 Afterthoughts 208(5)
Epilogue: Samos, 2005 213(6)
Appendixes
A How did the Babylonians Approximate 219(2)
√2?
B Pythagorean Triples 221(2)
C Sums of Two Squares 223(4)
D A Proof that √2 is Irrational 227(2)
E Archimedes' Formula for Circumscribing 229(2)
Polygons
F Proof of some Formulas from Chapter 7 231(4)
G Deriving the Equation x2/3 + y2/3 = 1 235(2)
H Solutions to Brainteasers 237(4)
Chronology 241(6)
Bibliography 247(4)
Illustrations Credits 251(2)
Index 253