金利モデル入門<br>Interest Rate Models : An Introduction

個数:

金利モデル入門
Interest Rate Models : An Introduction

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 288 p.
  • 言語 ENG
  • 商品コード 9780691118949
  • DDC分類 332.80151

基本説明

Describes fully the broad range of approaches: short-rate models, no-arbitrage models, the Heath-Jarrow-Morton framework, and much more.

Full Description


The field of financial mathematics has developed tremendously over the past thirty years, and the underlying models that have taken shape in interest rate markets and bond markets, being much richer in structure than equity-derivative models, are particularly fascinating and complex. This book introduces the tools required for the arbitrage-free modelling of the dynamics of these markets. Andrew Cairns addresses not only seminal works but also modern developments. Refreshingly broad in scope, covering numerical methods, credit risk, and descriptive models, and with an approachable sequence of opening chapters, Interest Rate Models will make readers--be they graduate students, academics, or practitioners--confident enough to develop their own interest rate models or to price nonstandard derivatives using existing models. The mathematical chapters begin with the simple binomial model that introduces many core ideas. But the main chapters work their way systematically through all of the main developments in continuous-time interest rate modelling.The book describes fully the broad range of approaches to interest rate modelling: short-rate models, no-arbitrage models, the Heath-Jarrow-Morton framework, multifactor models, forward measures, positive-interest models, and market models. Later chapters cover some related topics, including numerical methods, credit risk, and model calibration. Significantly, the book develops the martingale approach to bond pricing in detail, concentrating on risk-neutral pricing, before later exploring recent advances in interest rate modelling where different pricing measures are important.

Contents

Preface ix Acknowledgements xiii 1. Introduction to Bond Markets 1 1.1 Bonds 1 1.2 Fixed-Interest Bonds 2 1.3 STRIPS 10 1.4 Bonds with Built-in Options 10 1.5 Index-Linked Bonds 10 1.6 General Theories of Interest Rates 11 1.7 Exercises 13 2. Arbitrage-Free Pricing 15 2.1 Example of Arbitrage: Parallel Yield Curve Shifts 16 2.2 Fundamental Theorem of Asset Pricing 18 2.3 The Long-Term Spot Rate 19 2.4 Factors 23 2.5 A Bond Is a Derivative 23 2.6 Put-Call Parity 23 2.7 Types of Model 24 2.8 Exercises 25 3. Discrete-Time Binomial Models 29 3.1 A Simple No-Arbitrage Model 29 3.2 The Ho and Lee No-Arbitrage Model 30 3.3 Recombining Binomial Model 32 3.4 Models for the Risk-Free Rate of Interest 37 3.5 Futures Contracts 45 3.6 Exercises 48 4. Continuous-Time Interest Rate Models 53 4.1 One-Factor Models for the Risk-Free Rate 53 4.2 The Martingale Approach 55 4.3 The PDE Approach to Pricing 60 4.4 Further Comment on the General Results 64 4.5 The Vasicek Model 64 4.6 The Cox-Ingersoll-Ross Model 66 4.7 A Comparison of the Vasicek and Cox-Ingersoll-Ross Models 70 4.8 Affine Short-Rate Models 74 4.9 Other Short-Rate Models 77 4.10 Options on Coupon-Paying Securities 77 4.11 Exercises 78 5. No-Arbitrage Models 85 5.1 Introduction 85 5.2 Markov Models 86 5.3 The Heath-Jarrow-Morton (HJM) Framework 91 5.4 Relationship between HJM and Markov Models 96 5.5 Exercises 97 6. Multifactor Models 101 6.1 Introduction 101 6.2 Affine Models 102 6.3 Consols Models 112 6.4 Multifactor Heath-Jarrow-Morton Models 115 6.5 Options on Coupon-Paying Securities 116 6.6 Quadratic Term-Structure Models (QTSMs) 118 6.7 Other Multifactor Models 118 6.8 Exercises 119 7. The Forward-Measure Approach 121 7.1 A New Numeraire 121 7.2 Change of Measure 122 7.3 Derivative Payments 122 7.4 A Replicating Strategy 123 7.5 Evaluation of a Derivative Price 124 7.6 Equity Options with Stochastic Interest 126 7.7 Exercises 128 8. Positive Interest 131 8.1 Introduction 131 8.2 Mathematical Development 131 8.3 The Flesaker and Hughston Approach 134 8.4 Derivative Pricing 135 8.5 Examples 136 8.6 Exercises 142 9. Market Models 143 9.1 Market Rates of Interest 143 9.2 LIBOR Market Models: the BGM Approach 144 9.3 Simulation of LIBOR Market Models 152 9.4 Swap Market Models 153 9.5 Exercises 155 10 Numerical Methods 159 10.1 Choice of Measure 159 10.2 Lattice Methods 160 10.3 Finite-Difference Methods 168 10.4 Numerical Examples 178 10.5 Simulation Methods 184 10.6 Exercise 196 11 Credit Risk 197 11.1 Introduction 197 11.2 Structural Models 199 11.3 A Discrete-Time Model 201 11.4 Reduced-Form Models 206 11.5 Derivative Contracts with Credit Risk 218 11.6 Exercises 222 12 Model Calibration 227 12.1 Descriptive Models for the Yield Curve 227 12.2 A General Parametric Model 228 12.3 Estimation 229 12.4 Splines 234 12.5 Volatility Calibration 238 12.6 Exercises 239 Appendix A: Summary of Key Probability and SDE Theory 241 A.1 The Multivariate Normal Distribution 241 A.2 Brownian Motion 241 A.3 Ito Integrals 242 A.4 One-Dimensional Ito and Diffusion Processes 243 A.5 Multi-Dimensional Diffusion Processes 244 A.6 The Feynman-Kac Formula 245 A.7 The Martingale Representation Theorem 246 A.8 Change of Probability Measure 246 Appendix B: The Vasicek and CIR Models: Proofs 249 B.1 The Vasicek Model 249 B.2 The Cox-Ingersoll-Ross Model 253 References 265 Index 271