Logic and Computation : Interactive Proof with Cambridge Lcf (Cambridge Tracts in Theoretical Computer Science)

個数:
  • ポイントキャンペーン

Logic and Computation : Interactive Proof with Cambridge Lcf (Cambridge Tracts in Theoretical Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • ≪洋書のご注文につきまして≫ 「海外取次在庫あり」および「国内仕入れ先からお取り寄せいたします」表示の商品でも、納期の目安期間内にお届けできないことがございます。あらかじめご了承ください。

  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 300 p.
  • 言語 ENG
  • 商品コード 9780521395601
  • DDC分類 004

基本説明

This book is concerned with techniques for formal theorem-proving, with particular reference to Cambridge LCF (Logic for Computable Functions).

Full Description


This book is concerned with techniques for formal theorem-proving, with particular reference to Cambridge LCF (Logic for Computable Functions). Cambridge LCF is a computer program for reasoning about computation. It combines the methods of mathematical logic with domain theory, the basis of the denotational approach to specifying the meaning of program statements. Cambridge LCF is based on an earlier theorem-proving system, Edinburgh LCF, which introduced a design that gives the user flexibility to use and extend the system. A goal of this book is to explain the design, which has been adopted in several other systems. The book consists of two parts. Part I outlines the mathematical preliminaries, elementary logic and domain theory, and explains them at an intuitive level, giving reference to more advanced reading; Part II provides sufficient detail to serve as a reference manual for Cambridge LCF. It will also be a useful guide for implementors of other programs based on the LCF approach.

Table of Contents

Part I. Preliminaries: 1. Survey and history of
LCF
2. Formal proof in first order logic
3. A logic of computable functions
4. Structural induction
Part II. Cambridge LCF: 5. Syntactic operators
for PPL
6. Theory structure
7. Axioms and interference rules
8. Tactics and tacticals
9. Rewriting and simplification
10. Sample proofs
Bibliography
Index.