計量経済学におけるシミュレーション・ベースの推論<br>Simulation-based Inference in Econometrics : Methods and Applications

個数:

計量経済学におけるシミュレーション・ベースの推論
Simulation-based Inference in Econometrics : Methods and Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 476 p.
  • 言語 ENG
  • 商品コード 9780521088022
  • DDC分類 330.015195

基本説明

New in paperback. Hardcover was published in 2000. The contributions include important essays by many of the leading figures currently working in econometrics.

Full Description

This substantial volume has two principal objectives. First it provides an overview of the statistical foundations of Simulation-based inference. This includes the summary and synthesis of the many concepts and results extant in the theoretical literature, the different classes of problems and estimators, the asymptotic properties of these estimators, as well as descriptions of the different simulators in use. Second, the volume provides empirical and operational examples of SBI methods. Often what is missing, even in existing applied papers, are operational issues. Which simulator works best for which problem and why? This volume will explicitly address the important numerical and computational issues in SBI which are not covered comprehensively in the existing literature. Examples of such issues are: comparisons with existing tractable methods, number of replications needed for robust results, choice of instruments, simulation noise and bias as well as efficiency loss in practice.

Contents

Part I. Simulation-Based Inference in Econometrics, Methods and Applications: Introduction Melvyn Weeks; 1. Simulation-based inference in econometrics: motivation and methods Steven Stern; Part II. Microeconometric Methods: Introduction Melvyn Weeks; 2. Accelerated Monte Carlo integration: an application to dynamic latent variable models Jean-Francois Richard and Wei Zhang; 3. Some practical issues in maximum simulated likelihood Vassillis A. Hajivassiliou; 4. Bayesian inference for dynamic discrete choice models without the need for dynamic programming John Geweke and Miochael Keane; 6. Bayesian analysis of the multinomial probit model Peter E. Rossi and Robert E. McCulloch; Part III. Time Series Methods and Models: Introduction Til Schuermann; 7. Simulated moment methods for empirical equivalent martingale measures Bent Jesper Christensen and Nicholas M. Kiefer; 8. Exact maximum likelihood estimation of observation-driven econometric models Francis X. Diebold and Til Schuermann; 9. Simulation-based inference in non-linear state space models: application to testing the permanent income hypothesis Roberto S. Mariano and Hisashi Tanizaki; 10. Simulation-based estimation of some factor models in econometrics Vance L. Martin and Adrian R. Pagan; 11. Simulation-based Bayesian inference for economic time series John Geweke; Part IV. Other Areas of Application and Technical Issues: Introduction Roberto S. Mariano; 12. A comparison of computational methods for hierarchical methods in customer survey questionnaire data Eric T. Bradlow; 13. Calibration by simulation for small sample bias correction Christian Gourieroux, Eric Renault and Nizar Touzi; 14. Simulation-based estimation of a nonlinear, latent factor aggregate production function Lee Ohanian, Giovanni L. Violante, Per Krusell, Jose-Victor Rios-Rull; 15. Testing calibrated general equilibrium models Fabio Canova and Eva Ortega; 16. Simulation variance reduction for bootstrapping Bryan W. Brown; Index.

最近チェックした商品