医薬と生物におけるゲノム・プロテオミクス技術<br>Genomics and Proteomics Engineering in Medicine and Biology

個数:

医薬と生物におけるゲノム・プロテオミクス技術
Genomics and Proteomics Engineering in Medicine and Biology

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 297 p.
  • 言語 ENG
  • 商品コード 9780471631811
  • DDC分類 572.6

基本説明

Highlights current applications of biomedical informatics, as well as advancements in genomics-proteomics areas.

Full Description

Current applications and recent advances in genomics and proteomics Genomics and Proteomics Engineering in Medicine and Biology presents a well-rounded, interdisciplinary discussion of a topic that is at the cutting edge of both molecular biology and bioengineering. Compiling contributions by established experts, this book highlights up-to-date applications of biomedical informatics, as well as advancements in genomics-proteomics areas. Structures and algorithms are used to analyze genomic data and develop computational solutions for pathological understanding.

Topics discussed include:



Qualitative knowledge models
Interpreting micro-array data
Gene regulation bioinformatics
Methods to analyze micro-array
Cancer behavior and radiation therapy
Error-control codes and the genome
Complex life science multi-database queries
Computational protein analysis
Tumor and tumor suppressor proteins interactions

Contents

Preface. Contributors.

1. Qualitative Knowledge Models in Functional Genomics and Proteomics (Mor Peleg, Irene S. Gabashvili, and Russ B. Altman).

1.1. Introduction.

1.2. Methods and Tools.

1.3. Modeling Approach and Results.

1.4. Discussion.

1.5. Conclusion.

References.

2. Interpreting Microarray Data and Related Applications Using Nonlinear System Identification (Michael Korenberg).

2.1. Introduction.

2.2. Background.

2.3. Parallel Cascade Identification.

2.4. Constructing Class Predictors.

2.5. Prediction Based on Gene Expression Profiling.

2.6. Comparing Different Predictors Over the Same Data Set.

2.7. Concluding Remarks.

References.

3. Gene Regulation Bioinformatics of Microarray Data (Gert Thijs, Frank De Smet, Yves Moreau, Kathleen Marchal, and Bart De Moor).

3.1. Introduction.

3.2. Introduction to Transcriptional Regulation.

3.3. Measuring Gene Expression Profiles.

3.4. Preprocessing of Data.

3.5. Clustering of Gene Expression Profiles.

3.6. Cluster Validation.

3.7. Searching for Common Binding Sites of Coregulated Genes.

3.8. Inclusive: Online Integrated Analysis of Microarray Data.

3.9. Further Integrative Steps.

3.10. Conclusion.

References.

4. Robust Methods for Microarray Analysis (George S. Davidson, Shawn Martin, Kevin W. Boyack, Brian N. Wylie, Juanita Martinez, Anthony Aragon, Margaret Werner-Washburne, Mo'nica Mosquera-Caro, and Cheryl Willman).

4.1. Introduction.

4.2. Microarray Experiments and Analysis Methods.

4.3. Unsupervised Methods.

4.4. Supervised Methods.

4.5. Conclusion.

References.

5. In Silico Radiation Oncology: A Platform for Understanding Cancer Behavior and Optimizing Radiation Therapy Treatment (G. Stamatakos, D. Dionysiou, and N. Uzunoglu).

5.1. Philosophiae Tumoralis Principia Algorithmica: Algorithmic Principles of Simulating Cancer on Computer.

5.2. Brief Literature Review.

5.3. Paradigm of Four-Dimensional Simulation of Tumor Growth and Response to Radiation Therapy In Vivo.

5.4. Discussion.

5.5. Future Trends.

References.

6. Genomewide Motif Identification Using a Dictionary Model (Chiara Sabatti and Kenneth Lange).

6.1. Introduction.

6.2. Unified Model.

6.3. Algorithms for Likelihood Evaluation.

6.4. Parameter Estimation via Minorization-Maximization Algorithm.

6.5. Examples.

6.6. Discussion and Conclusion.

References.

7. Error Control Codes and the Genome (Elebeoba E. May).

7.1. Error Control and Communication: A Review.

7.3. Reverse Engineering the Genetic Error Control System.

7.4. Applications of Biological Coding Theory.

References.

8. Complex Life Science Multidatabase Queries (Zina Ben Miled, Nianhua Li, Yue He, Malika Mahoui, and Omran Bukhres).

8.1. Introduction.

8.2. Architecture.

8.3. Query Execution Plans.

8.4. Related Work.

8.5. Future Trends.

References.

9. Computational Analysis of Proteins (Dimitrios I. Fotiadis, Yorgos Goletsis, Christos Lampros, and Costas Papaloukas).

9.1. Introduction: Definitions.

9.2. Databases.

9.3. Sequence Motifs and Domains.

9.4. Sequence Alignment.

9.5. Modeling.

9.6. Classification and Prediction.

9.7. Natural Language Processing.

9.8. Future Trends.

References.

10. Computational Analysis of Interactions Between Tumor and Tumor Suppressor Proteins (E. Pirogova, M. Akay, and I. Cosic).

10.1. Introduction.

10.2. Methodology: Resonant Recognition Model.

10.3. Results and Discussions.

10.4. Conclusion.

References.

Index.

About the Editor.

最近チェックした商品