An Introduction to the Optical Spectroscopy of Inorganic Solids

個数:
  • ポイントキャンペーン

An Introduction to the Optical Spectroscopy of Inorganic Solids

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • ≪洋書のご注文につきまして≫ 「海外取次在庫あり」および「国内仕入れ先からお取り寄せいたします」表示の商品でも、納期の目安期間内にお届けできないことがございます。あらかじめご了承ください。

  • 製本 Hardcover:ハードカバー版/ページ数 283 p.
  • 言語 ENG
  • 商品コード 9780470868850
  • DDC分類 530.41

基本説明

Covers the theory, instrumentation and applications of spectroscopy for the characterisation of inorganic materials, including lasers, phosphors and optical materials such as photonics.

Full Description


This practical guide to spectroscopy and inorganic materials meets the demand from academia and the science community for an introductory text that introduces the different optical spectroscopic techniques, used in many laboratories, for material characterisation. * Treats the most basic aspects to be introduced into the field of optical spectroscopy of inorganic materials, enabling a student to interpret simple optical (absorption, reflectivity, emission and scattering) spectra * Contains simple, illustrative examples and solved exercises * Covers the theory, instrumentation and applications of spectroscopy for the characterisation of inorganic materials, including lasers, phosphors and optical materials such as photonics This is an ideal beginner's guide for students with some previous knowledge in quantum mechanics and optics, as well as a reference source for professionals or researchers in materials science, especially the growing field of optical materials.

Table of Contents

Preface                                            xi
Acknowledgments xv
Some Physical Constants of Interest in xvii
Spectroscopy
A Periodic Table of the Elements for Optical xix
Spectroscopy
Fundamentals 1 (38)
The Origins of Spectroscopy 1 (1)
The Electromagnetic Spectrum and Optical 2 (6)
Spectroscopy
Absorption 8 (8)
The Absorption Coefficient 8 (3)
The Measurement of Absorption Spectra: 11 (4)
The Spectrophotometer
Reflectivity 15 (1)
Luminescence 16 (12)
The Measurement of Photoluminescence: 17 (3)
The Spectrofluorimeter
Luminescent Efficiency 20 (2)
Stokes and Anti-Stokes Shifts 22 (3)
Time-Resolved Luminescence 25 (3)
Scattering: The Raman Effect 28 (5)
Advanced Topic: The Fourier Transform 33 (6)
Spectrometer
Exercises 36 (2)
References and Further Reading 38 (1)
Light Sources 39 (38)
Introduction 39 (2)
Thermal Radiation and Planck's Law 39 (2)
Lamps 41 (4)
Tungsten and Quartz Halogen Lamps 42 (1)
Spectral Lamps 42 (1)
Fluorescent Lamps 43 (1)
High-Pressure Discharge Vapor Lamps 44 (1)
Solid State Lamps 44 (1)
The Laser 45 (7)
Lasers as Light Sources in Spectroscopy 45 (2)
The Basic Principles of Lasers 47 (1)
Population Inversion: the Threshold 48 (3)
Condition
Pumping Techniques 51 (1)
The Resonator 52 (1)
Types of Lasers 52 (12)
The Excimer Laser 53 (2)
Gas Lasers 55 (2)
Dye Lasers 57 (3)
Semiconductor Lasers 60 (2)
Solid State Lasers 62 (2)
The Tunability of Laser Radiation 64 (7)
Tunable Solid State Lasers 64 (3)
Tunable Coherent Radiation by 67 (1)
Frequency-Mixing Techniques
Optical Parametric Oscillation and 68 (3)
Amplification
Advanced Topics: Site Selective 71 (6)
Spectroscopy and Excited State Absorption
Site Selective Spectroscopy 72 (1)
Excited State Absorption 73 (1)
Exercises 74 (1)
References and Further Reading 74 (3)
Monochromators and Detectors 77 (36)
Introduction 77 (1)
Monochromators 77 (5)
Detectors 82 (11)
Basic Parameters 83 (1)
Types of Detectors 84 (9)
The Photomultiplier 93 (8)
The Working Principles of a 93 (4)
Photomultiplier
Noise in Photomultipliers 97 (4)
Optimization of the Signal-to-Noise Ratio 101 (5)
The Averaging Procedure 101 (1)
The Lock-in Amplifier 101 (2)
The Photon Counter 103 (1)
The Optical Multichannel Analyzer 104 (2)
Detection of Pulses 106 (2)
Digital Oscilloscopes 107 (1)
The Boxcar Integrator 107 (1)
Advanced Topics: The Streak Camera and 108 (5)
the Autocorrelator
The Streak Camera 108 (1)
The Autocorrelator 109 (2)
Exercises 111 (1)
References and Further Reading 112 (1)
The Optical Transparency of Solids 113 (38)
Introduction 113 (1)
Optical Magnitudes and the Dielectric 113 (3)
Constant
The Lorentz Oscillator 116 (6)
Metals 122 (5)
Ideal Metal 123 (3)
Damping Effects 126 (1)
Semiconductors and Insulators 127 (4)
The Spectral Shape of the Fundamental 131 (8)
Absorption Edge
The Absorption Edge for Direct 133 (2)
Transitions
The Absorption Edge for Indirect 135 (4)
Transitions
Exercises 139 (5)
Weakly Bound (Mott-Wannier) Excitons 140 (3)
Tightly Bound (Frenkel) Excitons 143 (1)
Advanced Topic: The Color of Metals 144 (7)
Exercises 146 (3)
References and Further Reading 149 (2)
Optically Active Centers 151 (48)
Introduction 151 (1)
Static Interaction 152 (9)
Crystalline Field Theory 153 (6)
Molecular Orbital Theory 159 (2)
Band Intensities 161 (9)
The Absorption Probability 161 (2)
Allowed Transitions and Selection Rules 163 (2)
Polarized Transitions 165 (1)
The Probability of Spontaneous Emission 166 (1)
The Effect of the Crystal on the 167 (1)
Transition Probabilities
Oscillator Strength: Smakula's Formula 168 (2)
Dynamic Interaction: The Configurational 170 (5)
Coordinate Diagram
Band Shape: The Huang-Rhys Coupling 175 (6)
Parameter
Nonradiative Transitions 181 (10)
Multiphonon Emission 182 (1)
Energy Transfer 183 (5)
The Concentration Quenching of 188 (3)
Luminescence
Advanced Topic: The Determination of 191 (8)
Quantum Efficiencies
Exercises 195 (2)
References and Further Reading 197 (2)
Applications: Rare Earth and Transition 199 (36)
Metal Ions, and Color Centers
Introduction 199 (1)
Rare Earth Ions 200 (6)
Trivalent Rare Earth Ions: The Dieke 200 (5)
Diagram
Divalent Rare Earth Ions 205 (1)
Nonradiative Transitions in Rare Earth 206 (4)
Ions: The `Energy-Gap' Law
Transition Metal Ions 210 (10)
3d1 Ions 211 (1)
3dn Ions: Sugano-Tanabe Diagrams 212 (8)
Color centers 220 (4)
Advanced Topics: The Judd and Ofelt 224 (11)
Formalism, and Optical Cooling of Solids
The Judd and Ofelt Formalism 225 (3)
Optical Cooling of Solids 228 (3)
Exercises 231 (2)
References and Further Reading 233 (2)
Group Theory and Spectroscopy 235 (28)
Introduction 235 (1)
Symmetry Operations and Classes 236 (4)
Representations: The Character Table 240 (4)
Reduction in Symmetry and The Splitting 244 (7)
of Energy Levels
Selection Rules for Optical Transitions 251 (2)
Illustrative Examples 253 (3)
Advanced Topic: The Application to 256 (7)
Optical Transitions of Kramers Ions
Exercises 260 (2)
References and Further Reading 262 (1)
Appendix A1 The Joint Density of States 263 (3)
Appendix A2 The Effect of an Octahedral Field 266 (5)
on a d1 Valence Electron
Appendix A3 The Calculation of the Probability 271 (3)
of Spontaneous Emission by Means of Einstein's
Thermodynamic Treatment
Appendix A4 The Determination of Smakula's 274 (3)
Formula
Index 277