宇宙船センサー<br>Spacecraft Sensors

個数:

宇宙船センサー
Spacecraft Sensors

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • ≪洋書のご注文につきまして≫ 「海外取次在庫あり」および「国内仕入れ先からお取り寄せいたします」表示の商品でも、納期の目安期間内にお届けできないことがございます。あらかじめご了承ください。

  • 製本 Hardcover:ハードカバー版/ページ数 322 p.
  • 言語 ENG
  • 商品コード 9780470865279
  • DDC分類 629.472

基本説明

Focusing on the differences between sensors in manned and unmanned spacecrafts, the book also discusses a collection of essential topics such as: statistical analysis, error measurement assessment, noist reduction and filter optimization.

Full Description


"Spacecraft Sensors", the first of its kind, offers a comprehensive review of many aspects and intricacies of sensors used in the spacecraft industry. It covers sensor development from concept, design, and cost, to building, testing, interfacing, integrating, and on orbit operation. It is intended for the specialist or non specialist engineer, scientist, and those involved in the business aspect of the spacecraft industry. Focusing on how these various disciplines contribute to the development of a sensor used in space, this key text: explains how mathematics, physics, business, and engineering based concepts are used to develop and design a sensor which complies with a set of specific requirements; discusses essential topics such as cost estimation, signal processing, noise reduction, filters, phased arrays, radars, optics, and radiometers used in space operation; covers a range of typical sensors used in the spacecraft industry such as infrared, passive microwave, radars and spacebased GPS sensors; and concludes each chapter with examples of past and current orbiting sensors such as DSP, SBIRS, CHAMP, LANDSAT, and GOES to illustrate how concepts are applied.It also includes the Matlab codes used to create the example plots in order to give the reader a starting point for further analysis. "Spacecraft Sensors" is an invaluable resource for engineers, technical consultants, those in the business division, and research scientists associated with spacecraft projects. It is also an excellent textbook for undergraduate and postgraduate students studying the development, design and applications of spacebased sensors.

Table of Contents

Preface                                            xiii
1 Introduction 1 (50)
1.1 Concepts 1 (4)
1.2 Spacecraft Sensors Cost 5 (8)
1.2.1 Introduction to Cost Estimating 5 (2)
1.2.2 Cost Data 7 (1)
1.2.3 Cost Estimating Methodologies 8 (2)
1.2.4 The Cost Estimating Relationship 10 (2)
Method
1.2.5 Insurance Cost 12 (1)
1.3 Spacecraft Sensors Trade-off 13 (1)
1.4 Spacecraft Environment 14 (6)
1.4.1 Vacuum 15 (1)
1.4.2 Neutral Environment Effects 15 (2)
1.4.3 Plasma Environment Effects 17 (1)
1.4.4 Radiation Environment Effects 18 (1)
1.4.5 Contamination 19 (1)
1.4.6 Synergistic Effects 19 (1)
1.4.7 Space Junk 19 (1)
1.5 Standards 20 (3)
1.6 Packaging 23 (1)
1.7 Interface and Integration 24 (4)
1.7.1 Mil-STD 1553 Interface 25 (2)
1.7.2 Proximity Issues 27 (1)
1.7.3 Integration 28 (1)
1.8 Testing 28 (11)
1.8.1 Performance Testing 30 (1)
1.8.2 Thermal Testing 30 (3)
1.8.3 Corona-arcing 33 (1)
1.8.4 Electromagnetic Compatibility and 34 (1)
Interference Testing
1.8.5 Vibration Testing 35 (1)
1.8.6 Balancing 36 (2)
1.8.7 Mission Simulation Tests 38 (1)
1.9 Sensors on Orbit 39 (10)
1.9.1 Reference Frame 39 (2)
1.9.2 Coordinate Transfer in 41 (2)
Three-dimensional Space
1.9.3 Conic Trajectories 43 (2)
1.9.4 Attitude of a Spacecraft 45 (4)
Bibliography 49 (2)
2 Sensors and Signals 51 (44)
2.1 Sensor Characteristics 51 (5)
2.1.1 Accuracy and Precision 52 (1)
2.1.2 Hysteresis 53 (1)
2.1.3 Calibration 54 (1)
2.1.4 Transfer Function 55 (1)
2.2 Types of Signals 56 (15)
2.2.1 Signal Properties 58 (1)
2.2.2 Periodic Signals 59 (1)
2.2.3 Representing Signals as Impulses 59 (2)
2.2.4 Random Signals 61 (10)
2.3 Transforming a Signal 71 (13)
2.3.1 Analog-to-digital Converter 72 (5)
2.3.2 Digital-to-analog Converters 77 (1)
2.3.3 ADC and DAC Errors 78 (1)
2.3.4 Modulation 79 (5)
2.4 Data Analysis 84 (9)
2.4.1 Uncertainty Analysis and Propagation 86 (1)
of Error
2.4.2 Regression Analysis 87 (1)
2.4.3 Least Square Method 88 (1)
2.4.4 Fourier Analysis 89 (4)
Bibliography 93 (2)
3 Noise and Filtering in Spacecraft Sensors 95 (40)
3.1 Internal Noise 96 (5)
3.1.1 Thermal Noise 96 (2)
3.1.2 Thermal EMF 98 (1)
3.1.3 Parameter Noise 98 (1)
3.1.4 Dark Current 99 (1)
3.1.5 Shot Noise 99 (1)
3.1.6 Excess Noise or 1/f Noise 100 (1)
3.1.7 Dielectric Absorption 101 (1)
3.2 External Noise 101 (3)
3.2.1 Clutter Noise 101 (1)
3.2.2 Jamming 102 (1)
3.2.3 Radio Frequency Coupling 103 (1)
3.2.4 Electromagnetic Field Coupling 103 (1)
3.2.5 Inductive Coupling 104 (1)
3.3 Signal-to-Noise Ratio 104 (1)
3.4 Filter Types 105 (10)
3.4.1 Low-pass Filter 109 (3)
3.4.2 High-pass Filter 112 (2)
3.4.3 Band-pass Filter 114 (1)
3.5 Digital Filtering 115 (8)
3.5.1 Window Design 119 (3)
3.5.2 FIR Filter Design Example 122 (1)
3.5.3 IIR Filter Design 122 (1)
3.6 Microwave Filters 123 (3)
3.7 Optical Filters 126 (2)
3.8 Digital Image Filtering 128 (1)
3.9 Kalman Filter 129 (4)
3.9.1 State-space Representation 129 (1)
3.9.2 Discrete Kalman Filter 130 (3)
Bibliography 133 (2)
4 Infrared Sensors 135 (70)
4.1 Electromagnetic Waves 135 (23)
4.1.1 The Electromagnetic Spectrum 135 (2)
4.1.2 Maxwell's Equations 137 (4)
4.1.3 Wave Equation 141 (4)
4.1.4 Solution to Maxwell's Equations 145 (1)
4.1.5 Phase and Group Velocity 146 (1)
4.1.6 Polarization 147 (1)
4.1.7 Radiance 148 (2)
4.1.8 Irradiance 150 (1)
4.1.9 Interference 151 (2)
4.1.10 Diffraction 153 (2)
4.1.11 Black body Radiation 155 (3)
4.2 Interaction with Matter 158 (5)
4.2.1 Atmospheric Absorption 159 (1)
4.2.2 Reflectance 160 (1)
4.2.3 Scattering 161 (2)
4.3 Optics 163 (12)
4.3.1 Refraction/Reflection 163 (4)
4.3.2 Concave Mirror 167 (1)
4.3.3 Lenses 168 (2)
4.3.4 Lens Combinations 170 (2)
4.3.5 Aberrations 172 (1)
4.3.6 Optical Resolution 173 (2)
4.4 Scanning Mechanisms 175 (4)
4.4.1 Linear Array: Pushbroom 176 (1)
4.4.2 Whiskbroom 177 (1)
4.4.3 Scanner Parameters 178 (1)
4.5 Optical Detectors 179 (8)
4.5.1 Semiconductors 179 (2)
4.5.2 Photoelectric Effect 181 (1)
4.5.3 Performance Criteria for Detectors 182 (1)
4.5.4 Detector Readout 183 (1)
4.5.5 InSb Photodiode 184 (1)
4.5.6 HgCdTe Photodiode 184 (1)
4.5.7 Thermal Control 185 (2)
4.6 Landsat 7: ETM+ 187 (3)
4.7 ASTER 190 (5)
4.7.1 ASTER: TIR 191 (2)
4.7.2 ASTER: SWIR 193 (1)
4.7.3 ASTER: VNIR 194 (1)
4.8 GOES 195 (2)
4.8.1 GOES-I Imager 195 (2)
4.8.2 GOES-I/M Sounder 197 (1)
4.9 DSP and SBIRS 197 (6)
Bibliography 203 (2)
5 Passive Microwave Sensors 205 (50)
5.1 Antenna 205 (25)
5.1.1 Vector Potential 206 (2)
5.1.2 Infinitesimal Antenna 208 (4)
5.1.3 Antenna Radiation Pattern 212 (2)
5.1.4 Directivity and Gain 214 (3)
5.1.5 Antenna Polarization 217 (1)
5.1.6 Waveguides 218 (6)
5.1.7 Antenna Types 224 (6)
5.2 Phased arrays 230 (8)
5.2.1 Simple Array of Two Antennas 231 (1)
5.2.2 Linear Antenna Array 231 (4)
5.2.3 Two-dimensional Antenna Array 235 (1)
5.2.4 Beam Steering 236 (2)
5.3 Radiometers 238 (9)
5.3.1 Power-temperature Correspondence for 239 (1)
Antennas
5.3.2 Remote Temperature Measurement using 240 (3)
Radiometry
5.3.3 Dicke Radiometer 243 (2)
5.3.4 Radiometric Sensitivity 245 (2)
5.4 Aqua: AMSR-E 247 (2)
5.5 SeaSat: SMMR 249 (2)
5.6 Envisat: MWR 251 (2)
Bibliography 253 (2)
6 Spacebased Radar Sensors 255 (42)
6.1 Radar Introduction 255 (23)
6.1.1 Overview 256 (1)
6.1.2 Frequency Bands 257 (1)
6.1.3 Radar Equation 258 (2)
6.1.4 The Radar Range Equation 260 (4)
6.1.5 Radar Cross Section 264 (1)
6.1.6 False Alarm 264 (2)
6.1.7 Doppler Radars and the Doppler Effect 266 (7)
6.1.8 Resolution 273 (3)
6.1.9 RF Power Amplifiers 276 (2)
6.2 Radar Imaging 278 (2)
6.3 Altimetry 280 (3)
6.4 Envisat: RA-2 283 (2)
6.5 Synthetic Aperture Radar 285 (2)
6.6 Envisat: ASAR 287 (3)
6.7 Interferometric SAR 290 (2)
6.8 Ground Penetrating Radar (GPR) 292 (3)
6.8.1 MARSIS 294 (1)
Bibliography 295 (2)
7 GPS 297 (22)
7.1 GPS Overview 297 (2)
7.2 Concept 299 (2)
7.3 GPS Signal 301 (3)
7.3.1 Structure 301 (2)
7.3.2 GPS Data 303 (1)
7.4 GPS Receiver 304 (1)
7.5 GPS Signal Processing 305 (6)
7.5.1 Code Phase Technique 305 (3)
7.5.2 Carrier Phase Method 308 (1)
7.5.3 GPS Error Sources 308 (1)
7.5.4 GPS Clock 309 (2)
7.6 GPS Coverage 311 (1)
7.7 GPS for Atmospheric Measurements 312 (2)
7.8 Docking/Rendezvous 314 (2)
7.9 Attitude Determination 316 (1)
7.10 AMSAT-OSCAR 40 (AO-40) 317 (1)
Bibliography 318 (1)
Index 319