Metal Catalysed Carbon-Carbon Bond-Forming Reactions (Catalysts for Fine Chemicals Synthesis) 〈0〉

個数:

Metal Catalysed Carbon-Carbon Bond-Forming Reactions (Catalysts for Fine Chemicals Synthesis) 〈0〉

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • ≪洋書のご注文につきまして≫ 「海外取次在庫あり」および「国内仕入れ先からお取り寄せいたします」表示の商品でも、納期の目安期間内にお届けできないことがございます。あらかじめご了承ください。

  • 製本 Hardcover:ハードカバー版/ページ数 256 p.
  • 言語 ENG
  • 商品コード 9780470861998
  • DDC分類 547.215

Table of Contents

Series Preface                                     xvii
Preface to Volume 3 xix
Abbreviations xxi
List of Chemical Names Used xxiii
1 Considerations of Industrial Fine Chemical 1 (12)
Synthesis
Mark W. Hooper 1 (12)
1.1 Introduction
1.2 Types of processes - flow charts 2 (1)
1.2.1 Classical process 2 (1)
1.2.2 General catalytic process 3 (1)
1.3 Costs associated with use of catalysts 3 (9)
1.3.1 Catalyst fabrication costs 3 (3)
1.3.2 Intellectual property right (IPR) 6 (1)
issues
1.3.3 Separation costs 7 (1)
1.3.4 Pre-reaction/immobilisation 7 (1)
1.3.5 Post reaction - separation 8 (1)
1.3.6 Industrial examples 9 (3)
References 12 (1)
2 Alkylation and Allylation Adjacent to a 13 (22)
Carbonyl Group
2.1 The RuH2(CO)(PPh3)3-catalysed
alkylation, alkenylation and arylation of
aromatic ketones via carbon-hydrogen bond
cleavage
Fumitoshi Kakiuchi, Satoshi Ueno and 14 (7)
Naoto Chatani
2.1.1 Preparation of 14 (2)
carbonyldihydrotris(triphenylphosphine)
ruthenium
2.1.2 Synthesis of 16 (1)
8-(2-triethoxysilanylethyl)-3,4-dihydro-
2H-naphthalen-1-one
2.1.3 Synthesis of 17 (1)
8-(1-methyl-2-trimethylsilanylvinyl)-3,4
-dihydro-2H-naphthalen-1-one
2.1.4 Synthesis of 18 (1)
1-biphenyl-2-yl-2,2-dimethylpropan-1-one
2.1.5 Conclusion 19 (2)
References 21 (1)
2.2 Catalytic, asymmetric synthesis of
α,α-disubstituted amino acids
using a chiral copper-salen complex as a
phase transfer catalyst
Michael North and Jose A. Fuentes 21 (6)
2.2.1 Synthesis of (chsalen) 22 (1)
2.2.2 Synthesis of copper(II) (chsalen) 23 (1)
2.2.3 Alkylation of alanine methyl 24 (2)
ester Schiff base by chiral salen-metal
catalysts, α-benzyl-alanine
methyl ester
2.2.4 Conclusion 26 (1)
References 27 (1)
2.3 Asymmetric phase-transfer catalysed
alkylation of glycine imines using cinchona
alkaloid derived quaternary ammonium salts
Barry Lygo and Benjamin I. Andrews 27 (9)
2.3.1 Synthesis of 28 (1)
(1S,2S,4S,5R,1'R)-1-(anthracen-9-ylmethy
l)-5-ethyl-2-[hydroxy(quinolin-4-yl)meth
yl]-1-azoniabicyclo[2.2.2]octane bromide
2.3.2 Synthesis of 29 (2)
(1S,2S,4S,5R,1'R)-1-(anthracen-9-ylmethy
l)-5-ethyl-2-[benzyloxy(quinolin-4-yl)me
thyl]-1-azoniabicyclo[2.2.2]octane
bromide
2.3.3 Synthesis of (2S)-tert-butyl 31 (1)
2-amino-4-bromopent-4-enoate
2.3.4 Conclusion 32 (1)
References 33 (2)
3 Asymmetric Alkylation or Amination of 35 (24)
Allylic Esters
3.1 Synthesis and application in
palladium-catalysed asymmetric allylic
substitution of enantiopure cyclic
β-iminophosphine ligands
Maria Zablocka, Marek Koprowski, 36 (4)
Jean-Pierre Majoral, Mathieu Achard and
GSard Buono
3.1.1 Synthesis of 36 (1)
(2,6-dimethyl-phenyl)-(1-phenyl-2,3,3a,8
a-tetrahydro-1H-1-phospha-cyclopenta[&al
pha;]inden-8-ylidene)-amines 1Rp
3.1.2 Synthesis of (E)-Methyl 37 (2)
2-carbomethoxy-3,5-diphenylpent-4-enoate
3.1.3 Synthesis of 39 (1)
benzyl(1,3-diphenylprop-2-enyl)amine
3.1.4 Conclusion 40 (1)
References 40 (1)
3.2
(9H,9'H,10H,10'H,11H,11H',13H,13'H,14H,14'H,
15H,15'H-perfluorotricosane-12,12'-diyl)bis
[(4S)-4-phenyl-2-oxazoline as a ligand for
asymmetric palladium-catalysed alkylation
of allylic acetates in fluorous media
JS杜e Bayardon and Denis Sinou 40 (7)
3.2.1 Synthesis of 41 (1)
2-iodo-1-(1H,1'H,2H,2'H,3H,3'H-perfluoro
octyl)-3-propanol
3.2.2 Synthesis of 42 (1)
3-(1H,1'H,2H,2'H,3H,3'H-perfluorooctyl)-
1-propanol
3.2.3 Synthesis of 43 (1)
3-(1H,1'H,2H,2'H,3H,3'H-perfluorooctyl)-
1-iodopropane
3.2.4 Synthesis of 44 (1)
(9H,9'H,10H,10'H,11H,11'H,13H,13'H,14H,1
4'H,15H,15'H-perfluorotricosane-
12,12'-diyl)-bis-[(4S)-4-phenyl-2-oxazol
ine]
3.2.5 Synthesis of (E)-Methyl 45 (1)
2-carbomethoxy-3,5-diphenylpent-4-enoate
3.2.6 Conclusion 46 (1)
References 47 (1)
3.3 Facile synthesis of new axially chiral
diphosphine complexes for asymmetric
catalysis
Matthias Lotz, Gernot Kramer, Katja Tappe 47 (4)
and Paul Knochel
3.3.1 Synthesis of 47 (2)
(SFc)-1-[(S)-p-tolylsulfinyl]-2-[(o-diph
enylphosphino)phenyl]ferrocene
3.3.2 Synthesis of 49 (1)
(SFc)-1-diphenylphosphino-2-[(o-diphenyl
phosphino)phenyl]ferrocene
3.3.3 Conclusion 50 (1)
References 51 (1)
3.4 Chiral ferrocenyl-imino phosphines as
ligands for palladium-catalysed
enantioselective allylic alkylations
Pierluigi Barbaro, Claudio Bianchini, 51 (9)
Giuliano Giambastiani and Antonio Togni
3.4.1 Synthesis of the precursor 52 (1)
(R)-1-[(S)-2-bromoferrocenyl]
ethyldiphenylphosphine
3.4.2 Synthesis of key precursor 53 (1)
(R)-1-[(S)-2-formylferrocenyl]
ethyldiphenylphosphine
3.4.3 Synthesis of 54 (1)
(R)-1-[(S)-2-ferrocenylidene-ethyl-imine
lethyldiphenyiphosphine
3.4.4 Conclusion 55 (1)
References 56 (3)
4 Suzuki Coupling Reactions 59 (32)
4.1 Palladium-catalysed borylation and
Suzuki coupling (BSC) to obtain
β-benzo[b]thienyldehydroamino acid
derivatives
Ana S. Abreu, Paula M.T. Ferreira and 60 (4)
Maria-Joao R.P. Queiroz
4.1.1 Synthesis of the E and Z isomers 61 (1)
of the methyl ester of
N-tert-butoxycarbonyl-β-bromodehydr
oaminobutyric acid
4.1.2 Synthesis of the methyl ester of 62 (2)
N-tert-butoxycarbonyl-(Z)-[β-(2,3,7
-trimethylbenzo[b]thien-6-yl]dehydro-ami
nobutyric acid
4.1.3 Conclusion 64 (1)
References 64 (1)
4.2 Palladium-catalysed cross-coupling
reactions of 4-tosylcoumarins and
arylboronic acids: synthesis of
4-arylcoumarin compounds
Jie Wu, Lisha Wang, Reza Fathi and Zhen 64 (3)
Yang
4.2.1 Synthesis of 4-tosylcoumarins 65 (1)
4.2.2 Synthesis of 4-arylcoumarin 65 (1)
4.2.3 Conclusion 66 (1)
References 66 (1)
4.3 Cyclopropyl arenes, alkynes and alkenes
from the in situ generation of
B-cyclopropyl-9-BBN and the Suzuki-Miyaura
coupling of aryl, alkynyl and alkenyl
bromides
Ramon E. Huertas and John A. Soderquist 67 (3)
4.3.1 Synthesis of 67 (2)
4-cyclopropylbenzaldehyde
4.3.2 Conclusion 69 (1)
References 69 (1)
4.4 One-pot synthesis of unsymmetrical
1,3-dienes through palladium-catalysed
sequential borylation of a vinyl
electrophile by a diboron and
cross-coupling with a distinct vinyl
electrophile
Tatsuo Ishiyama and Norio Miyaura 70 (4)
4.4.1 Synthesis of 70 (3)
2-(1-cyclopentenyl)-1-decene
4.4.2 Conclusion 73 (1)
References 74 (1)
4.5 Pd(OAc)2/2-Aryl oxazoline catalysed
Suzuki coupling reactions of aryl bromides
and boronic acids
Bin Tao and David W. Boykin 74 (3)
4.5.1 Synthesis of 4-methoxybiphenyl 75 (1)
4.5.2 Conclusion 76 (1)
References 77 (1)
4.6 Palladium-catalysed reactions of
haloaryl phosphine oxides: modular routes
to functionalised ligands
Colin Baillie, Lijin Xu and Jianliang Xiao 77 (4)
4.6.1 Synthesis of 78 (1)
2-diphenylphosphinyl-2'-methoxybiphenyl
via Suzuki coupling
4.6.2 Synthesis of 79 (1)
2-diphenylphosphino-2'-methoxybiphenyl
4.6.3 Conclusion 80 (1)
References 80 (1)
4.7 Bulky electron rich phosphino-amines as
ligands for the Suzuki coupling reaction of
aryl chlorides
Matthew L. Clarke and J. Derek Wool/ins 81 (5)
4.7.1 Synthesis of 82 (1)
N-di-isopropylphosphino-N-methyl
piperazine
4.7.2 Suzuki coupling reactions using 83 (1)
isolated ligand and Pd2dba3.CHCl3 as
catalyst
4.7.3 In situ ligand preparation and 84 (1)
application in Suzuki coupling of
3-fluorobenzene with phenylboronic acid
4.7.4 Conclusion 85 (1)
References 85 (1)
4.8 Arylation of ketones, aryl amination
and Suzuki-Miyaura cross coupling using a
well-defined palladium catalyst bearing an
N-heterocyclic carbene ligand
Nicholas Marion, Oscar Navarro, Roy A. 86 (6)
Kelly III and Steven P. Nolan
4.8.1 Synthesis of 86 (2)
1,2-diphenyl-ethanone by ketone
arylation
4.8.2 Synthesis of 88 (1)
dibutyl-p-tolyl-amine by aryl amination
4.8.3 Synthesis of 4-methoxybiphenyl 89 (1)
4.8.4 Conclusion 90 (1)
References 90 (1)
5 Heck Coupling Reactions 91 (22)
5.1 Palladium-catalysed multiple and
asymmetric arylations of vinyl ethers
carrying co-ordinating nitrogen
auxiliaries: synthesis of arylated ketones
and aldehydes
Peter Nilsson and Mats Larhed 92 (8)
5.1.1 Triarylation: synthesis of 92 (3)
N,N-dimethyl-2-[1,2,2-(triaryl)
ethenyloxylethanamines with subsequent
hydrolysisfurnishing 1,2,2-triaryl
ethanones, Table 5.1
5.1.2 Terminal diarylation: synthesis 95 (2)
of
N,N-dimethyl-2-[2,2-diarylethenyloxy]eth
anamine with subsequent hydrolysis
furnishing diary] ethanals Table 5.2
5.1.3 Asymmetric Heck arylation: 97 (2)
synthesis of
2-aryl-2-methylcyclopentanone
Conclusion 99 (1)
References 99 (1)
5.2 Palladium-catalysed highly
regioselective arylation of electron-rich
olefins
Lijin Xu, Jun Mo and Jianliang Xiao 100 (4)
5.2.1 Synthesis of 1-acetonaphthone 100 (2)
5.2.2 Synthesis of 3-acetylbenzonitrile 102 (2)
Conclusion 104 (1)
References 104 (1)
5.3
1-[4-(S)-tert-Butyl-2-oxazolin-2-yl]-2-(S)-(
diphenylphosphino) ferrocene as a ligand
for the palladium-catalysed intermolecular
asymmetric Heck reaction of 2,3-dihydrofuran
Tim G. Kilroy, Yvonne M. Malone and 104 (9)
Patrick J. Guiry
5.3.1 Synthesis of 106 (1)
N-[1-(S)-(Hydroxymethyl)-2,2-dimethylpro
pyl]ferrocenecarboxamide
5.3.2 Synthesis of 107 (1)
[4-(S)-tert-butyl-2-oxazolin-2-yl]
ferrocene
5.3.3 Synthesis of 108 (2)
1-[4-(S)-tert-butyl-2-oxazolin-2-yl]-2-(
S)-(diphenylphosphino)ferrocene
5.3.4 Asymmetric phenylation of 110 (2)
2,3-dihydrofuran
Conclusion 112 (1)
References 112 (1)
6 Sonogashira Coupling Reactions 113 (14)
6.1 Nonpolar biphasic catalysis: Suzuki-
and Sonogashira coupling reactions
Anupama Datta and Herbert Plenio 113 (3)
6.1.1 Nonpolar biphasic Sonogashira 114 (1)
reaction of 4-bromoaceto-phenone and
phenylacetylene to
1-(4-phenylethynyl-phenyl)-ethanone
6.1.2 Nonpolar biphasic Suzuki reaction 115 (1)
for the synthesis
of1-biphenyl-4-yl-ethanone
Conclusion 116 (1)
References 116 (1)
6.2 Polystyrene-supported soluble
palladacycle catalyst as recyclable
catalyst for Heck, Suzuki and Sonogashira
reactions
Chih-An Lin and Fen-Tair Luo 116 (12)
6.2.1 Synthesis of 117 (1)
3-bromo-4-methylacetophenone
6.2.2 Synthesis of 118 (2)
1-(3-bromo-4-methyl-phenyl)-ethanol
6.2.3 Synthesis of 120 (1)
3-bromo-4-methyl-styrene
6.2.4 Synthesis of 121 (1)
3-(diphenylphosphino)-4-methyl-styrene
6.2.5 Synthesis of 122 (1)
trans-di(μ-acetato)-bis[3-(diphenylph
os-phino)-4-styryl]dipalladium(II)
6.2.6 Synthesis of polymer-supported 123 (1)
palladacycle catalyst
6.2.7 Synthesis of 124 (1)
1-[4-(2-phenylethynyl)phenyl]ethan-1-one
via Sonogashira reaction by the use of
polymer-supported palladacycle catalyst
Conclusion 125 (1)
Reference 125 (2)
7 Cross-Coupling Reactions 127 (28)
7.1 Cross-coupling reaction of alkyl
halides with Grignard reagents in the
presence of 1,3-butadiene catalysed by
nickel, palladium, or copper
Jun Terao and Nobuaki Kambe 128 (5)
7.1.1 Synthesis of nonylcyclopropanc 128 (2)
7.1.2 Synthesis of 4-bromo-hexylbenzene 130 (1)
7.1.3 Synthesis of 1,1-diphenyl-1 nonene 131 (1)
Conclusion 132 (1)
References 132 (1)
7.2 Triorganoindium compounds as efficient
reagents for palladium-catalysed
cross-coupling reactions with aryl and
vinyl electrophiles
Luis A. Sarandeses and Jos PSez Sestelo 133 (5)
7.2.1 Preparation of triphenylindium 134 (1)
7.2.2 Synthesis of 4-acetylbiphenyl 134 (2)
7.2.3 Synthesis of 136 (1)
1,3-diphenyl-2-propen-1-one
Conclusion 137 (1)
References 138 (1)
7.3 Cross-coupling reactions catalysed by
heterogeneous nickel-on-charcoal
Bryan A. Frieman and Bruce H. Lipshutz 138 (9)
7.3.1 Preparation of the heterogeneous 139 (1)
catalyst: nickel-on-charcoal
7.3.2 Ni/C-catalysed Suzuki couplings: 140 (1)
2-cyanobiphenyl
7.3.3 Ni/C-catalysed aromatic 141 (1)
aminations: N-(4-cyanophenyl)-morpholine
7.3.4 Ni/C-catalysed cross-couplings en 142 (2)
route to allylated aromatics:
toluene-4-sulfonic acid
2-(3,7,11,15,19,23,27,31,
35,39-decamethyltetraconta-2,6,
10,14,18,22,26,-30,
34,38-decaenyl)-5,6-dimethoxy-3-methylph
enyl ester (coenzyme Q10 precursor)
7.3.5 Ni/C-catalysed reductions of aryl 144 (1)
chlorides
7.3.6 Microwave assisted Ni/C-catalysed 145 (2)
cross coupling of vinyl zirconocenes
and aryl halides:
1-octenyl-4-trifluoromethylbenzene
Conclusion 147 (1)
References 147 (1)
7.4 Carbon-carbon bond formation using
arylboron reagents with rhodium(I)
catalysts in aqueous media
John Mancuso, Masahiro Yoshida and Mark 147 (9)
Lautens
7.4.1 Synthesis of 148 (1)
(E)-2-[2-(2-methylphenyl)-1-
hexenyl]pyridine
7.4.2 Synthesis of methyl 149 (2)
(2EZ)-3-[2-(4,4,5,5-tetramethyl-1,3,2-di
oxaborolan-2-yl)phenyl]acrylate
7.4.3 Synthesis of methyl (1 151 (2)
S*,4R*,4aS*,9S*,9aS*)-2,3,4,4a,9,9ahexah
ydro-1H-1,4-methano-fluoren-9-ylacetate
References 153 (2)
8 Regioselective or Asymmetric 1,2-Addition 155 (14)
to Aldehydes
8.1 Development of a highly regioselective
metal-mediated allylation reaction in
aqueous media
Kui-Thong Tan, Shu-Sin Chng, Hin-Soon 156 (5)
Cheng and Teck-Peng Loh
8.1.1 Synthesis of 156 (1)
1-cyclohexylpent-3-en-ol using
indium-mediated allylation
8.1.2 Synthesis of 157 (2)
1-cyclohexylpent-3-en-ol using
tin-mediated allylation
8.1.3 Synthesis of 159 (1)
1-cyclohexylpent-3-en-ol
usingzinc-mediated allylation
Conclusion 160 (1)
References 161 (1)
8.2 Boronic acids as aryl source for the
catalysed enantioselective aryl transfer to
aldehydes
Jens Rudolph and Carsten Bolm 161 (3)
8.2.1 Preparation of (S)-4-tolyl-phenyl 161 (2)
methanol
Conclusion 163 (1)
References 163 (1)
8.3 Jacobsen's Salen as a chiral ligand for
the chromium-catalysed addition of
3-chloro-propenyl pivalate to aldehydes: a
catalytic asymmetric entry to
syn-alk-l-ene-3,4-diols
Marco Lombardo, Sebastiano Licciulli, 164 (5)
Stefano Morganti and Claudio Trombini
8.3.1 Synthesis of 3-chloro-propenyl 165 (1)
pivalate
8.3.2 Synthesis of alk-1-ene-3,4-diols: 166 (2)
Salen-Cr(II) catalysed addition of
3-chloro-propenyl pivalate to
cyclohexanecarboxaldehyde
Conclusion 168 (1)
References 168 (1)
9 Olefin Metathesis Reactions 169 (12)
9.1 Highly active ruthenium (pre)catalysts
for metathesis reactions
Syuzanna Harutyunyan, Anna Michrowska and 169 (5)
Karol Grela
9.1.1 Synthesis of the ruthenium 170 (1)
(pre)catalyst
9.1.2 Synthesis of 171 (1)
1-[(4-methylphenyl)sulfonyl]-2,3,6,7-tet
rahydro-1H-azepine
Conclusion 172 (1)
References 173 (1)
9.2 A highly active and readily recyclable
olefin metathesis catalyst
Stephen J. Connon, Aideen M. Dunne and 174 (4)
Siegfried Blechert
9.2.1 Synthesis of polymer supported 174 (2)
catalyst (3)
9.2.2 Ring-closing metathesis of an 176 (1)
acyclic diene and subsequent catalyst
recovery/reuse
Conclusion 177 (1)
References 177 (1)
9.3 Stereoselective synthesis of L-733,060
G. Bhaskar and B. Venkateswara Rao 178 (4)
9.3.1 Synthesis of 179 (1)
(2S,3S)-N-tert-butoxycarbonyl-2-phenyl
1,2,3,6-tetrahydro-3-pyridinol
Conclusion 180 (1)
References 180 (1)
10 Cyclisation Reactions 181 (20)
10.1 Molecular sieves as promoters for the
catalytic Pauson-Khand reaction
Jaime Blanco-Urgoiti, Gema Dominguez and 182 (3)
Javier PSez-Castells
10.1.1 Synthesis of 182 (3)
3aS*,5R*-5-hydroxy-3,3a,4,5-tetrahydrocy
clopenta[a]naphthalen-2-one
Conclusion 185 (1)
References 185 (1)
10.2 Palladium(II)-catalysed cyclization of
alkynes with aldehydes, ketones or nitriles
initiated by acetoxypalladation of alkynes
Ligang Zhao and Xiyan Lu 185 (5)
10.2.1 Synthesis of 186 (1)
3-phenyl-3-hydroxy-4-(1'-acetoxyhexylide
ne)tetrahydrofuran
10.2.2 Synthesis of dimethyl 187 (1)
3-acetylamino-4-butyrylcyclo-pent-3-ene-
1,1-dicarboxylate
Conclusion 188 (2)
References 190 (1)
10.3 Rhodium(I)-catalysed intramolecular
alder-ene reaction and syntheses of
functionalised a-methylene-y-butyrolactones
and cyclopentanones
Minsheng He, Aiwen Lei and Xumu Zhang 190 (3)
10.3.1 Synthesis of 190 (1)
(4-benzylidene-5-oxo-tetrahydro-furan-3-
yl)-acetaldehyde
10.3.2 Synthesis of 191 (1)
(3-oxo-2-pentylidene-cyclopentyl)-acetal
dehyde
References 192 (1)
10.4 Rhodium-catalysed [2+2+2]
cyclotrimerisation in an aqueous-organic
biphasic system
Hiroshi Shinokubo and Koichiro Oshima 193 (3)
10.4.1 In situ preparation of a 193 (1)
water-soluble rhodium catalyst from
[RhCl(COD)]2 and trisodium salt of
tris(m-sulfonatophenyl)phosphine (tppts)
10.4.2 Synthesis of 194 (1)
1,3,6,8,9,10,11,12,13-nonahydro-2,7-diox
acyclodeca[e]indene
Conclusion 195 (1)
References 196 (1)
10.5 Titanocene-catalysed transannular
cyclisation of epoxygermacrolides:
enantiospecific synthesis of eudesmanolides
Antonio Rosales, Juan M. Cuerva and J. 196 (6)
Enrique Oltra
10.5.1 Preparation and 197 (1)
titanocene-catalysed cyclization of
epoxygermacrolide: synthesis of
(+)-11β13-dihydroreynosin
10.5.2 Titanocene-catalysed cyclization 198 (1)
of epoxygermacrolide in aqueous medium
References 199 (2)
11 Asymmetric Aldol and Michael Reactions 201 (24)
11.1 Direct catalytic asymmetric aldol
reaction of a α-hydroxyketone
promoted by an Et2Zn/linked-BINOL complex
Masakatsu Shibasaki, Shigeki Matsunaga 202 (6)
and Naova Kumagai
11.1.1 Synthesis of 203 (2)
(2R,3S)-2,3-dihydroxy-1-(2-methoxyphenyl
)-5-phenyl-1-pentanone by the first
generation Et2,Zn/Linked-BINOL = 2/1
complex
11.1.2 Synthesis of 205 (2)
(2R,3S)-3-cyclohexyl-2,3-dihydroxy-1-(2-
methoxyphenyl)-1-propanone by the
second generation Et7Zn/linked-BINOL =
4/1 complex with MS3A
Conclusion 207 (1)
References 208 (1)
11.2 Highly enantioselective direct aldol
reaction catalysed by a novel small organic
molecule
Zhuo Tang, Liu-Zhu Gong, Ai-Qiao Mi and 208 (2)
Yao-Zhong Jiang
11.2.1 Synthesis of 208 (1)
(S,S,S)-pyrolidine-2-carboxylic acid
(2'-hydroxyl-1',2'-diphenyl-ethyl)-amine
(1)
11.2.2 Direct aldol reaction 209 (1)
Reference 210 (1)
11.3 Direct catalytic asymmetric Michael
reaction of α-hydroxyketone promoted
by Et2Zn/linked-BINOL complex
Masakatsu Shibasaki, Shigeki Matsunaga 210 (6)
and Naova Kumagai
11.3.1 Synthesis of 211 (2)
(2R)-2-hydroxy-1-(2-methoxyphenyl)-1,5-h
exanedione by the first generation
Et,Zn/linked-BINOL = 2/1 complex
11.3.2 Synthesis of 213 (32)
(2R)-2-hydroxy-1-(2-methoxyphenyl)-1,5-h
exanedione by the second
Et2Zn/linked-BINOL 4/1 complex with MS
3A
Conclusion 245
References 215 (1)
11.4 Catalytic enantioselective Michael
reaction catalysed by well-defined chiral
ruthenium-amido complexes
Masahito Watanabe, Kunihiko Murata, and 216 (10)
Takao Ikariya
11.4.1 Synthesis of 217 (2)
Ru[(R,R)-Tsdpenl(η6-arenc):
Ru[(R,R;-Tsdpen](ρ-cymene),
((R,R)-TsDPEN =
1R,2R)-N-(p-toluenesulfonyl)-1,2-dipheny
lethylenediamine) (p-cymene =
η6-1-CH3-4-CH(CH3)2C6H4)8b,
Ru[(R,R)-Tsdpen](hmb), and
Ru[(R,R)-Msdpen](hmb)
11.4.2 Synthesis of 219 (1)
(S)-3-di(methoxycarbonyl)methyl-lcyclope
ntanone from the Michael reaction of
dimethyl malonate and
2-cyclopenten-1-one catalysed by
Ru[(R,R)-Tsdpen](hmb)
11.4.3 Synthesis of 220 (1)
(S)-3-di(methoxycarbonyl)methyl-lcyclope
ntanone from the Michael reaction of
dimethyl malonate and cyclopentenone
catalyzed by Ru[(R,R)-N-Msdpen](hmb)
11.4.4 Synthesis 221 (1)
(S)-3-di(methoxycarbonyl)methyl-1-cycloh
exanone from the Michael reaction of
dimethyl malonate and cyclohexenone
catalysed by Ru[(R,R)- Msdpen](hmb)
Conclusion 222 (1)
References 223 (2)
12 Stereoselective Hydroformylation, 225 (26)
Carbonylation and Carboxylation Reactions
12.1
Ortho-diphenylphosphanylbenzoyl-(o-DPPB)
directed diastereoselective
hydroformylation of allylic alcohols
Bernhard Breit 226 (4)
12.1.1 Synthesis of 227 (1)
1RS-( -[(1-iso-propyl-2-methyl)prop-2-e
nyll (2-diphenylphosphanyl)benzoate
12.1.2 Synthesis of 228 (1)
(1R*,2R*)-( -[(1-Isopropyl-4-oxo-2-meth
yl)butyl]
(2-diphenylphosphanyl)-benzoate
Conclusion 229 (1)
References 230 (1)
12.2 The synthesis and application of
ESPHOS: A new diphosphorus ligand for the
hydroformylation of vinyl acetate
Martin Wills and Simon W. Breeden 230 (8)
12.2.1 Synthesis of 232 (1)
ortho-diazobromobenzene
12.2.2 Synthesis of 232 (1)
ortho-(dichlorophosphine) bromobenzene
12.2.3 Synthesis of 233 (1)
ortho-bis(dimethylamino) bromobenzene
12.2.4 Synthesis of 234 (1)
1,2-bis(dimethylaminophosphanyl)benzene
12.2.5 Synthesis of ESPHOS (1)[  235 (1)
12.2.6 Hydroformylation of vinyl 236 (1)
acetate[3]
Conclusion 237 (1)
References 237 (1)
12.3 Platinum-catalysed asymmetric
hydroformylation of styrene
Submitted by Stef nia CserQi-Sz…s and 238 (6)
J「zsef Bakos
12.3.1 Rhodium-catalysed asymmetric 239 (1)
hydroformylation of styrene
12.3.2 Synthesis of (4R,6R)-4,6-di 240 (1)
methyl-2-chloro-1,3,2-dioxaphosphorinane
12.3.3 Synthesis of 241 (2)
(2R,4R)-2,4-bis[(4R,6R)-4,6-dimethyl-1,3
,2-dioxaphos-phorinane-2-yloxy]-pentane
12.3.4 Determinataion of optical 243 (1)
purity: synthesis of mixture of
2-phenylpropionic acid and
3-phenylpropionic acid
12.4 Phosphine-free dimeric palladium (II)
complex for the carbonylation of aryl
iodides
C. Ramesh, Y. Kubota and Y. Sugi 244 (3)
12.4.1 Synthesis of the dimeric 244 (1)
oximepalladacycle
12.4.2 Synthesis of phenyl 245 (2)
biphenyl-4-carboxylatc
Conclusion 247 (1)
Reference 247 (1)
12.5 Carboxylation of pyrrole to
pyrrole-2-carboxylate by cells of Bacillus
megaterium in supercritical carbon dioxide
Tomoko Matsuda, Tadao Harada, Toru 247 (4)
Nagasawa and Kaoru Nakamura
12.5.1 Construction of supercritical 248 (1)
carbon dioxide reaction system
12.5.2 Carboxylation of pyrrole to 249 (1)
pyrrole-2-carboxylate
Conclusion 250 (1)
References 250 (1)
Index 251