Sige Heterojunction Bipolar Transistors

個数:

Sige Heterojunction Bipolar Transistors

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版/ページ数 272 p.
  • 言語 ENG
  • 商品コード 9780470848388
  • DDC分類 621.3815282

基本説明

Features SiGe products include chip sets for wireless cellular handsets as well as WLAN and high-speed wired network applications.

Table of Contents

Preface                                            xiii
Physical Constants and Properties of Silicon xvii
and Silicon-Germanium
List of Symbols xix
1 Introduction 1 (12)
1.1 Evolution of Silicon Bipolar Technology 1 (2)
1.2 Evolution of Silicon-Germanium HBT 3 (2)
Technology
1.3 Operating Principles of the Bipolar 5 (5)
Transistor
References 10 (3)
2 Basic Bipolar Transistor Theory 13 (14)
2.1 Introduction 13 (1)
2.2 Components of Base Current 13 (3)
2.3 Fundamental Equations 16 (3)
2.3.1 Assumptions 17 (2)
2.4 Base Current 19 (4)
2.4.1 Base Current in Shallow Emitters 20 (1)
2.4.2 Base Current in Deep Emitters 21 (1)
2.4.3 Recombination Current in the 22 (1)
Neutral Base
2.5 Collector Current 23 (1)
2.6 Current Gain 24 (1)
2.7 Gummel Numbers 25 (2)
3 Heavy Doping Effects 27 (18)
3.1 Introduction 27 (1)
3.2 Majority and Minority Carrier Mobility 28 (4)
3.3 Bandgap Narrowing 32 (4)
3.4 Minority Carrier Lifetime 36 (3)
3.5 Gain and Heavy Doping Effects 39 (1)
3.6 Non-uniform Doping Profiles 40 (2)
References 42 (3)
4 Second-Order Effects 45 (26)
4.1 Introduction 45 (1)
4.2 Low Current Gain 46 (10)
4.2.1 Recombination via Deep Levels 46 (3)
4.2.2 Recombination Current in the 49 (3)
Forward Biased Emitter/Base Depletion
Region
4.2.3 Generation Current in a Reverse 52 (1)
Biased pn Junction
4.2.4 Origins of Deep Levels in Bipolar 53 (3)
Transistors
4.3 High Current Gain 56 (2)
4.4 Basewidth Modulation 58 (1)
4.5 Series Resistance 59 (2)
4.6 Junction Breakdown 61 (8)
4.6.1 Punch-through 62 (1)
4.6.2 Zener Breakdown 63 (1)
4.6.3 Avalanche Breakdown 64 (1)
4.6.4 Junction Breakdown in Practice 65 (1)
4.6.5 Common Base and Common Emitter 65 (3)
Breakdown Voltages
4.6.6 Trade-off between Gain and BVCEO 68 (1)
References 69 (2)
5 High-frequency Performance 71 (22)
5.1 Introduction 71 (1)
5.2 Forward Transit Time TF 72 (4)
5.2.1 Components of TF 72 (1)
5.2.2 Base Transit Time 72 (2)
5.2.3 Emitter Delay 74 (1)
5.2.4 Collector/Base Depletion Region 75 (1)
Transit Time
5.2.5 Emitter/Base Depletion Region Delay 76 (1)
5.3 Cut-off Frequency fT 76 (3)
5.4 Maximum Oscillation Frequency frnax 79 (1)
5.5 Kirk Effect 80 (4)
5.6 Base, Collector and Emitter Resistance 84 (3)
5.6.1 Base Resistance 84 (2)
5.6.2 Collector Resistance 86 (1)
5.7 Emitter/Base and Collector/Base 87 (1)
Depletion Capacitance
5.8 Quasi-saturation 88 (2)
5.9 Current Crowding 90 (1)
References 91 (2)
6 Polysilicon Emitters 93 (28)
6.1 Introduction 93 (1)
6.2 Basic Fabrication and Operation of 94 (2)
Polysilicon Emitters
6.3 Diffusion in Polysilicon Emitters 96 (4)
6.4 Influence of the Polysilicon/Silicon 100 (1)
Interface
6.5 Base Current in Polysilicon Emitters 101 (3)
6.6 Effective Surface Recombination Velocity 104 (3)
6.7 Emitter Resistance 107 (1)
6.8 Design of Practical Polysilicon Emitters 108 (8)
6.8.1 Break-up of the Interfacial Oxide 108 (3)
Layer and Epitaxial Regrowth
6.8.2 Epitaxially Regrown Emitters 111 (1)
6.8.3 Trade-off between Emitter 112 (3)
Resistance and Current Gain in
Polysilicon Emitters
6.8.4 Emitter Plug Effect and in situ 115 (1)
Doped Polysilicon Emitters
6.9 pnp Polysilicon Emitters 116 (2)
References 118 (3)
7 Properties and Growth of Silicon-Germanium 121 (28)
7.1 Introduction 121 (1)
7.2 Materials Properties of 122 (5)
Silicon-Germanium
7.2.1 Pseudomorphic Silicon-Germanium 122 (1)
7.2.2 Critical Thickness 123 (2)
7.2.3 Band Structure of Silicon-Germanium 125 (2)
7.3 Physical Properties of Silicon-Germanium 127 (3)
7.3.1 Dielectric Constant 127 (1)
7.3.2 Density of States 127 (1)
7.3.3 Apparent Bandgap Narrowing 128 (1)
7.3.4 Minority Carrier Hole Mobility 129 (1)
7.4 Basic Epitaxy Theory 130 (6)
7.4.1 Boundary Layer Model 133 (2)
7.4.2 Growth Modes 135 (1)
7.5 Low-Temperature Epitaxy 136 (3)
7.5.1 In situ Hydrogen Bake 136 (1)
7.5.2 Hydrogen Passivation 137 (1)
7.5.3 Ultra-clean Epitaxy Systems 138 (1)
7.6 Comparison of Silicon and 139 (2)
Silicon-Germanium Epitaxy
7.7 Selective Epitaxy 141 (4)
7.7.1 Faceting and Loading Effects 143 (2)
References 145 (4)
8 Silicon-Germanium Heterojunction Bipolar 149 (18)
Transistors
8.1 Introduction 149 (1)
8.2 Bandgap Engineering 150 (2)
8.3 Collector Current, Base Current and 152 (1)
Gain Enhancement
8.4 Cut-off Frequency 153 (1)
8.5 Device Design Trade-offs in a SiGe HBT 154 (1)
8.6 Graded Germanium Profiles 155 (3)
8.6.1 Design Equations for a Graded 156 (2)
Germanium Profile
8.7 Boron Diffusion in SiGe HBTs 158 (5)
8.7.1 Parasitic Energy Barriers 158 (2)
8.7.2 Factors Influencing Boron Diffusion 160 (2)
in Si and SiGe
8.7.3 SiGe:C-Reduction of Boron Diffusion 162 (1)
by Carbon Doping
8.8 Strain Relaxation and Strain 163 (1)
Compensated Si1-x-yGexCy
References 164 (3)
9 Silicon Bipolar Technology 167 (24)
9.1 Introduction 167 (2)
9.2 Buried Layer and Epitaxy 169 (3)
9.3 Isolation 172 (4)
9.4 Selective Implanted Collector 176 (2)
9.5 Double-polysilicon, Self-aligned 178 (5)
Bipolar Process
9.6 Single-polysilicon Bipolar Process 183 (1)
9.7 BiCMOS Process 184 (2)
9.8 Complementary Bipolar Process 186 (1)
References 187 (4)
10 Silicon-Germanium Heterojunction Bipolar 191 (20)
Technology
10.1 Introduction 191 (2)
10.2 Differential Epitaxy Silicon-Germanium 193 (5)
HBT Process
10.2.1 Polysilicon Nucleation Layer 195 (1)
10.2.2 Self-aligned Emitter for the 196 (2)
Differential Epitaxy HBT
10.3 Selective Epitaxy Silicon-Germanium 198 (2)
HBT Process
10.4 Silicon-Germanium-Carbon HBT Process 200 (1)
10.5 Silicon-Germanium HBT Process Using 201 (2)
Germanium Implantation
10.6 Radio Frequency Silicon-Germanium 203 (5)
BiCMOS Process
References 208 (3)
11 Compact Models of Bipolar Transistors 211 (28)
11.1 Introduction 211 (1)
11.2 Ebers-Moll Model 212 (2)
11.3 Non-linear Hybrid-π Model 214 (2)
11.4 Modelling the Low-current Gain 216 (2)
11.5 AC Non-linear Hyhrid-π Model 218 (2)
11.6 Small-signal Hyhrid-rπ Model 220 (2)
11.7 Gummel-Poon Model 222 (3)
11.8 The SPICE Bipolar Transistor Model 225 (8)
11.8.1 Collector Current and Base Current 226 (1)
11.8.2 Forward Transit Time 226 (3)
11.8.3 Base Resistance 229 (1)
11.8.4 Collector Resistance 230 (1)
11.8.5 Emitter Resistance 231 (1)
11.8.6 Emitter, Collector and Substrate 232 (1)
Capacitances
11.8.7 Additional Parameters 233 (1)
11.9 Limitations of the SPICE Bipolar 233 (1)
Transistor Model
11.10 VBIL Model 234 (2)
11.11 Mextram Model 236 (2)
References 238 (1)
12 Optimization of Silicon and 239 (18)
Silicon-Germanium Bipolar Technologies
12.1 Introduction 239 (1)
12.2 ECL and CML Propagation Delay 240 (2)
Expressions
12.3 Calculation of Electrical Parameters 242 (2)
12.4 Gate Delay Estimation 244 (2)
12.5 Optimization Procedure 246 (1)
12.6 Optimization of Silicon Bipolar 246 (5)
Technology
12.7 Optimization of Silicon-Germanium HBT 251 (4)
Technology
References 255 (2)
Index 257