有機結晶工学<br>Organic Crystal Engineering : Frontiers in Crystal Engineering

個数:

有機結晶工学
Organic Crystal Engineering : Frontiers in Crystal Engineering

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 344 p.
  • 言語 ENG
  • 商品コード 9780470319901
  • DDC分類 548

基本説明

Provides a useful guide to the exciting new discipline of organic crystal engineering, that will be of interest to all researchers in molecular solid-state chemistry.

Full Description

Organic Crystal Engineering provides reviews of topics in organic crystal engineering that will be of interest to all researchers in molecular solid-state chemistry. Specialist reviews written by internationally recognized researchers, drawn from both academia and industry, cover topics including crystal structure prediction features, polymorphism, reactions in the solid-state, designing new arrays and delineating prominent intermolecular forces for important organic molecules.

Contents

List of Contributors. Preface.

1 The Role of the Cambridge Structural Database in Crystal Engineering (Andrew D. Bond).

1.1 Introduction.

1.2 Organisation and Management of Crystallographic Information.

1.3 Organisation of Crystallographic Information for Crystal Engineering.

1.4 New Tools for Database Research.

1.5 Search for Functional Group Exchanges: GRX.

1.6 Search for Solvated and Unsolvated Structures: Solvates.

1.7 Clustering and Classifying CSD Search Results: dSNAP.

1.8 The PXRD Profile as a Structural Descriptor.

1.9 Identifying Supramolecular Constructs: XPac.

1.10 Concluding Remarks: the Future Role of Crystallographic Databases.

References.

2 Computational Crystal Structure Prediction: Towards In Silico Solid Form Screening (Graeme M. Day).

2.1 Introduction.

2.2 Methods used to Predict Crystal Structures.

2.3 Current Capabilities of Crystal Structure Prediction.

2.4 Exploration of Crystal Forms. A Case Study: Carbamazepine.

2.5 Summary.

Acknowledgments.

References.

3 Multi-component Pharmaceutical Crystalline Phases: Engineering for Performance (Matthew L. Peterson, Edwin A. Collier, Magali B. Hickey, Hector Guzman and Örn Almarsson).

3.1 Introduction.

3.2 Exploring Crystal Form Diversity.

3.3 High-throughput Experimentation.

3.4 Examples of 'Form and Formulation'.

3.5 AMG517 and Celecoxib - 'Spring and Parachute' Approach.

3.6 Carbamazepine - Stabilization Against a Hydrate.

3.7 Theophylline:Phenobarbital - Two is Better Than One.

3.8 Delaviridine Mesylate - Material Misbehavior.

3.9 Summary and Outlook.

References.

4 Complex Formation of Surfactants with Aromatic Compounds and their Pharmaceutical Applications (Yuji Ohashi, Keiju Sawada and Nahoko Iimura).

4.1 Introduction.

4.2 Structures of the Complexes Formed Between Surfactants and Aromatic Compounds.

4.3 Complex Formation of Aromatic Compounds Containing an Hetero Ring.

4.4 Complex Formation of Biphenyl with Cationic Surfactants.

4.5 Complex Formation of Odd-Number Surfactants with Biphenyl.

4.6 Common Packing Mode in the Complexes.

4.7 Complex Formation by Grinding in a Mortar.

4.8 C-H...p interactions.

4.9 Complex Formation of Anionic Surfactants with Aromatic Compounds.

4.10 Increased Solubility of Insoluble Drugs.

4.11 Enhanced Thermal Stability of Perfumes.

4.12 Complex Formation with Surfactants other than Quaternary Alkylammonium Salts.

4.13 Hydroquinone Complexes.

4.14 Application to Whitening Agents.

Acknowledgments.

References.

5 Hydrogen Bonding and Molecular Packing in Multi-Functional Crystal Structures (Ashwini Nangia).

5.1 Introduction.

5.2 Hydrogen Bonding in Ureas and Amides.

5.3 Pyridyl Ureas and Amides.

5.4 Nitrophenyl Ureas and Amides.

5.5 Molecular Conformation and Hydrogen Bonding.

5.6 Supramolecular HSAB Interactions.

5.7 gem-alkynols.

5.8 Conclusions.

Acknowledgments.

References.

6 Persistence of N-H...S Hydrogen Bonding in Thiocarbamide Structures (Edward R. T. Tiekink).

6.1 Introduction.

6.2 Supramolecular Aggregation Patterns in the Thiocarbamides.

6.3 Conclusions.

References.

7 Crystal Engineering with the Molecules Containing Amide and Pyridine Functionalities (Kumar Biradha and Lalit Rajput).

7.1 Introduction.

7.2 Primary Amides Containing the Pyridine Moiety.

7.3 Co-crystals with Primary Amidopyridines.

7.4 Secondary Amides Containing a Pyridine Moiety.

7.5 Bis-Amidopyridine Derivatives.

7.6 Two-component Structures Containing Secondary Amides and Pyridine Derivatives.

7.7 Triamidopyridine Derivatives.

7.8 Conclusions.

Acknowledgements.

References.

8 Urea/Thiourea-Anion Host Lattices, Stabilization of Labile Species, and Designed Construction of Rosette Ribbon and Layers (Thomas C. W. Mak, Chi-Keung Lam, Jie Han, Qi Li and Feng Xue).

8.1 Introduction.

8.2 Inclusion Compounds with Urea/Thiourea-Anion Host Lattices.

8.3 Stabilization of Cyclic Oxocarbon Dianions by Hydrogen Bonding with Urea/Thiourea.

8.4 Supramolecular Assembly Based on the Rosette Motif.

8.5 Conclusion and Outlook.

Acknowledgments.

References.

Index.