Viability, Invariance and Applications: Volume 207 (North-Holland Mathematics Studies") 〈207〉

個数:

Viability, Invariance and Applications: Volume 207 (North-Holland Mathematics Studies") 〈207〉

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 356 p.
  • 言語 ENG
  • 商品コード 9780444527615
  • DDC分類 515.35

基本説明

Features: New concepts for multi-functions as the classical tangent vectors for functions.

Full Description


The book is an almost self-contained presentation of the most important concepts and results in viability and invariance. The viability of a set K with respect to a given function (or multi-function) F, defined on it, describes the property that, for each initial data in K, the differential equation (or inclusion) driven by that function or multi-function) to have at least one solution. The invariance of a set K with respect to a function (or multi-function) F, defined on a larger set D, is that property which says that each solution of the differential equation (or inclusion) driven by F and issuing in K remains in K, at least for a short time.The book includes the most important necessary and sufficient conditions for viability starting with Nagumo's Viability Theorem for ordinary differential equations with continuous right-hand sides and continuing with the corresponding extensions either to differential inclusions or to semilinear or even fully nonlinear evolution equations, systems and inclusions. In the latter (i.e. multi-valued) cases, the results (based on two completely new tangency concepts), all due to the authors, are original and extend significantly, in several directions, their well-known classical counterparts.

Contents

1. Generalities 2. Specific preliminary resultsOrdinary differential equations and inclusions 3. Nagumo type viability theorems 4. Problems of invariance 5. Viability under Caratheodory conditions 6. Viability for differential inclusions 7. ApplicationsPart 2 Evolution equations and inclusions 8. Viability for single-valued semilinear evolutions 9. Viability for multi-valued semilinear evolutions 10. Viability for single-valued fully nonlinear evolutions 11. Viability for multi-valued fully nonlinear evolutions 12. Caratheodory perturbations of m-dissipative operators 13. Applications

最近チェックした商品