Powder Sampling and Particle Size Determination

個数:

Powder Sampling and Particle Size Determination

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    ウクライナ情勢悪化・新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。詳しくはこちらをご確認ください。
    海外からのお取り寄せの場合、弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • 製本 Hardcover:ハードカバー版/ページ数 680 p.
  • 言語 ENG
  • 商品コード 9780444515643
  • DDC分類 620.43

Full Description


Powder technology is a rapidly expanding technology and nowhere more than in particle characterization. There has been an explosion of new particle measuring techniques in the past ten year particularly in the field of on-line measurement. One of the main aims of this book is to bring the reader up-to-date with current practices. One important area of interest is the improvements in on-line light scattering instruments and the introduction of ultrasonic on-line devices. Another is the introduction of on-line microscopy, which permits shape analysis in conjunction with particle sizing.Schools of powder technology are common in Europe and Japan but the importance of this subject has only recently been recognised in America with the emergence of the Particle Research Centre (PERC) at the University of Florida in Gainsville.

Table of Contents

Acknowledgements                                   xvii
Preface xix
Editor's foreword xxi
1 Powder sampling
1.1 Introduction 1 (1)
1.2 Sample selection 2 (4)
1.3 Sampling stored material 6 (6)
1.3.1 Sampling stored non-flowing material 7 (2)
1.3.2 Sampling from heaps 9 (1)
1.3.3 Sampling stored bulk free-flowing 10 (1)
powders
1.3.4 Sampling from sacks and drums 11 (1)
1.3.5 Sampling from trucks and railcars 12 (1)
1.4 Sampling flowing streams 12 (12)
1.4.1 Sampling from a conveyor belt 13 (1)
1.4.2 Point samplers 14 (1)
1.4.3 Sampling from falling streams 14 (4)
1.4.4 Stream sampling ladles 18 (1)
1.4.5 Traversing cutters 19 (1)
1.4.6 Sampling dusty material 19 (4)
1.4.7 In-line sampling 23 (1)
1.5 Sample reduction 24 (11)
1.5.1 Scoop sampling 25 (1)
1.5.2 Cone and quartering 26 (1)
1.5.3 Table sampling 27 (1)
1.5.4 Chute splitting 27 (1)
1.5.5 Spinning rifflers 28 (2)
1.5.6 Commercial rotary sample dividers 30 (1)
1.5.7 Miscellaneous sampling devices 30 (5)
1.6 Slurry sampling 35 (1)
1.7 Reduction of laboratory sample to 36 (2)
measurement sample
1.8 Number of samples required 38 (4)
1.9 Theoretical statistical errors on a 42 (3)
number basis
1.10 Practical statistical errors on a number 45 (1)
basis
1.11 Theoretical statistical errors on a 46 (1)
weight basis
1.12 Practical statistical errors on a weight 46 (3)
basis
1.13 Experimental tests of sampling techniques 49 (1)
1.14 Weight of sample required 50 (6)
1.14.1 Gross sample 50 (1)
1.14.2 Sampling by increments 51 (5)
2 Data presentation and interpretation
2.1 Introduction 56 (1)
2.2 Particle size 57 (6)
2.3 Average diameters 63 (5)
2.4 Particle dispersion 68 (1)
2.5 Particle shape 69 (20)
2.5.1 Shape coefficients 74 (2)
2.5.2 Shape factors 76 (2)
2.5.3 Applications of shape factors and 78 (4)
shape coefficients
2.5.4 Shape indices 82 (1)
2.5.5 Shape regeneration 83 (1)
2.5.6 Fractal dimensions characterization 84 (4)
of textured surfaces
2.5.7 Other methods of shape analysis 88 (1)
2.5.8 Sorting by shape 88 (1)
2.6 Determination of specific surface from 89 (4)
size distribution data
2.6.1 Determination of specific surface 89 (1)
from a number count
2.6.2 Determination of specific surface 90 (1)
from a surface count
2.6.3 Determination of specific surface 90 (3)
from a volume (mass) count
2.7 Tabular presentation of particle size 93 (2)
distribution
2.8 Graphical presentation of size 95 (1)
distribution data
2.8.1 Presentation on linear graph paper 95 (1)
2.9 Standard forms of distribution functions 96 (1)
2.10 Arithmetic normal distribution 96 (6)
2.10.1 Manipulation of the normal equation 99 (3)
2.11 The log-normal distribution 100
2.11.1 Relationship between number mean 102 (3)
sizes for a log-normal distribution
2.11.2 Derived mean sizes 105 (1)
2.11.3 Transformation between log-normal 106 (1)
distributions
2.11.4 Relationship between median and mode 107 (1)
of a log-normal equation
2.11.5 An improved equation and graph paper 108 (1)
for log-normal evaluations
2.11.6 Application 109 (1)
2.12 Johnson's SB distribution 109 (2)
2.13 Rosin-Rammler-Bennet-Sperling formula 111 (1)
2.14 Other distribution laws 112 (5)
2.14.1 Simplification of two parameter 112 (2)
equations
2.14.2 Comments 114 (3)
2.15 The law of compensating errors 117 (1)
2.16 Evaluation of nonlinear distributions on 117 (8)
log-normal paper
2.16.1 Bimodal intersecting distributions 117 (5)
2.16.2 Bimodal non-intersecting 122 (1)
distributions
2.16.3 Other distributions 122 (1)
2.16.4 Applications of lug-normal plots 123 (1)
2.16.5 Curve fitting 123 (2)
2.16.6 Data interpretation 125 (1)
2.17 Alternative notations for frequency 125 (11)
distribution
2.17.1 Notation 125 (1)
2.17.2 Moment of a distribution 126 (1)
2.17.3 Transformation from qt(x) to q(x) 126 (1)
2.17.4 Relation between moments 127 (1)
2.17.5 Means of distributions 128 (1)
2.17.6 Standard deviations 129 (1)
2.17.7 Coefficient of variation 130 (1)
2.17.8 Applications 130 (2)
2.17.9 Transformation of abscissas 132 (4)
2.18 Phi-notation 136 (6)
3 Particle size analysis by image analysis
3.1 Introduction 142 (2)
3.2 Standards 144 (1)
3.3 Optical microscopy 145 (2)
3.3.1 Upper size limit for optical 145 (1)
microscopy
3.3.2 Lower size limit for optical 146 (1)
microscopy
3.4 Sample preparation 147 (4)
3.5 Measurement of plane sections through 151 (1)
packed beds
3.6 Particle size 151 (2)
3.7 Calibration 153 (3)
3.7.1 Linear eyepiece graticules 154 (1)
3.7.2 Globe and circle graticules 154 (2)
3.8 Training of operators 156 (1)
3.9 Experimental techniques 157 (1)
3.10 Determination of particle size 158 (2)
distribution by number
3.11 Conditions governing a weight size 160 (4)
determination
3.11.1 Illustrative example of the 162 (2)
calculation of a size distribution by weight
3.12 Semi-automatic aids to microscopy 164 (3)
3.13 Automatic aids to microscopy 167 (2)
3.13.1 Beckman Coulter RapidVUE 167 (1)
3.13.2 Micromeretics OptiSizer PSDATM 5400 167 (1)
3.13.3 Oxford VisiSizer 168 (1)
3.13.4 Retsch Camsizer 168 (1)
3.13.5 Malvern Sysmex Flow Particle Image 168 (1)
Analyzer
3.13.6 Sci-Tec PartAn - video Image Analyser 169 (1)
3.14 Quantitative image analysis 169 (18)
3.14.1 Calibration of image analyzers 170
3.14.2 Experimental procedures 110 (70)
3.14.3 Commercial quantitative image 180 (3)
analysis systems
3.14.4 Confocal laser-scanning microscopy 183 (1)
3.14.5 On-line microscopy 184 (1)
3.14.6 Flatbed scanners 185 (1)
3.14.7 Dark field microscopy 185 (1)
3.14.8 Phase contrast microscopy 186 (1)
3.14.9 Polarized light microscopy (PLM) 186 (1)
3.14.10 Dipix 1440F power scope imaging 187 (1)
microscope
3.14.11 Transmission wide field phase 187 (1)
contrast microscopy
3.15 Electronmicroscopy 187 (1)
3.16 Transmission electron microscopy (TEM) 188 (5)
3.16.1 Specimen preparation for TEM 188 (4)
3.16.2 Replica and shadowing techniques 192 (1)
3.16.3 Chemical analysis 192 (1)
3.17 Scanning electron microscopy 193 (3)
3.18 Other scanning electron microscopy 196 (3)
techniques
3.19 Errors involved in converting a number 199 (1)
to a volume count
3.20 Evaluation of procedures 200 (8)
4 Particle size analysis by sieving
4.1 Introduction 208 (2)
4.2 Standard sieves 210 (2)
4.3 Tolerances for standard sieves 212 (1)
4.4 Woven-wire and punched plate sieves 213 (1)
4.5 Electroformed micromesh sieves 214 (4)
4.6 Mathematical analysis of the sieving 218 (3)
process
4.7 Calibration of sieves 221 (3)
4.8 Sieving errors 224 (3)
4.9 Methods of sieving 227 (2)
4.10 Amount of sample required 229 (1)
4.11 Hand sieving 230 (1)
4.12 Machine sieving 231 (3)
4.13 Wet sieving 234 (3)
4.13.1 Manual 234 (1)
4.13.2 Wet sieving by machine 235 (2)
4.14 Air jet sieving 237 (2)
4.15 The Sonic Sifter 239 (1)
4.16 The Seishin Robot Sifter 239 (1)
4.17 Automatic systems 240 (1)
4.17.1 The Rotex Gradex 2000 particle size 240 (1)
analyzer
4.17.2 Labcon automatic sieve system 241 (1)
4.17.3 Gilson Compu-Sieveォ analysis system 241 (1)
4.18 Ultrasonic sieving 241 (1)
4.19 The sieve cascadograph 241 (2)
4.20 Felvation 243 (1)
4.21 Self organized sieves (SORSI) 243 (1)
4.22 Shape separation 244 (1)
4.23 Correlation with light scattering data 245 (1)
4.24 Conclusions 245 (6)
5 Fluid classification
5.1 Introduction 251 (1)
5.2 Assessment of classifier efficiency 251 (9)
5.3 Systems 260 (1)
5.4 Counter-flow equilibrium classifiers in a 261 (1)
gravitational field elutriators
5.5 Theory for elutriators 262 (2)
5.6 Water elutriators 264 (1)
5.7 Air elutriators 265 (1)
5.8 Counter-flow centrifugal classifiers; 266 (1)
5.9 Zig-zag gravitational classifiers 267 (1)
5.10 Zig-zag centrifugal classifiers 267 (1)
5.11 The Warmain Cyclosizer 268 (1)
5.12 Cross-flow gravitational classification 268 (1)
5.12.1 The Humboldt particle size analyzer 268 (1)
TDS
5.13 Cross-flow centrifugal classifiers 269 (1)
5.13.1 Analysette 9 269 (1)
5.13.2 The Donaldson Acucut classifier 269 (1)
5.14 Cross-flow elbow classifier 270 (1)
5.15 Micromeretics classifier; 270 (1)
5.16 Fractionation methods for particle size 271 (1)
measurement
5.17 Hydrodynamic chromatography 272 (3)
5.18 Capillary hydrodynamic fractionation 275 (1)
5.19 Capillary zone electrophoresis 276 (1)
5.20 Size exclusion chromatography 276 (1)
5.21 Field flow fractionation 277 (8)
5.21.1 Sedimentation field flow 278 (1)
fractionation (SFFF)
5.21.2 Centrifugal field flow fractionation 279 (1)
5.21.3 Time-delayed exponential SFFF 279 (3)
5.21.4 Thermal field flow fractionation 282 (1)
5.21.5 Magnetic field flow fractionation 282 (1)
5.21.6 Flow field flow fractionation 282 (2)
5.21.7 Steric field flow fractionation 284 (1)
5.21.8 Multi-angle light scattering (MALS) 284 (1)
5.22 The Matec electro-acoustic system 285 (1)
EAS-8000
5.23 Continuous split fractionation 285 (2)
5.24 Classification by decantation; 287 (8)
6 Interaction between particles and fluids 295 (64)
6.1 Introduction 295 (2)
6.2 Settling of a single homogeneous sphere 297 (3)
under a gravitational force
6.2.1 Relationship between settling 297 (2)
velocity and particle size
6.2.2 Calculation of particle size from 299 (1)
settling velocity in the laminar flow region
6.3 Size limits for gravity sedimentation 300 (6)
6.3.1 Upper size limit 301 (1)
6.3.2 Lower size limit 302 (4)
6.4 Time for terminal velocity to be attained 306 (2)
6.5 Errors due to the finite extent of the 308 (1)
fluid (wall effects)
6.6 Errors due todiscontinuity of the fluid 309 (2)
6.7 Viscosity of a suspension 311 (1)
6.8 Non-rigid spheres 312 (1)
6.9 Non-spherical particles 312 (10)
6.9.1 Stokes' region 312 (5)
6.9.2 Relationship between fiber diameter 317 (2)
and Stokes diameter
6.9.3 Transition region 319 (3)
6.10 Relationship between drag coefficient 322 (3)
and Reynolds number in the transition region
6.11 The turbulent flow region 325 (1)
6.12 Concentration effects 326 (6)
6.13 Hindered settling 332 (3)
6.13.1 Low concentration effects 333 (1)
6.13.2 High concentration effects 334 (1)
6.14 Electro-viscosity 335 (1)
6.15 Dispersion of powders 336 (11)
6.15.1 Dry powder dispersion 336 (1)
6.15.2 The use of glidants to improve 337 (1)
flowability of dry powders
6.15.3 Wet powder dispersion 338 (1)
6.15.4 Role of dispersing agents 338 (1)
6.15.5 Wetting a powder 339 (1)
6.15.6 Determination of contact angle (0) 340 (2)
6.15.7 Deagglomerating wetted clumps 342 (1)
6.15.8 Suspension stability 343 (1)
6.15.9 Tests of dispersion quality 344 (3)
6.16 Powder density 347 (3)
6.17 Liquid viscosity 350 (1)
6.18 Standard powders 350 (2)
6.19 National Standards 352 (7)
7 Gravitational sedimentation methods of
particle size determination
7.1 Introduction 359 (3)
7.2 Resolution of sedimenting suspensions 362 (2)
7.3 Concentration changes in a suspension 364 (1)
settling under gravity
7.4 Homogeneous incremental gravitational 365 (1)
sedimentation
7.4.1 The pipette method of Andreasen 365 (1)
7.5 Theory for the gravity photosedimentation 366 (6)
technique
7.5.1 The Beer Lambert law 366 (3)
7.5.2 The extinction coefficient 369 (1)
7.5.3 Turbidity measurements (Turbidimetry) 370 (1)
7.5.4 The photosedimentation technique 370 (2)
7.5 Commercial photosedimentometers 372 (2)
7.5.6 Sedimentation image analysis 373 (1)
7.5.7 Transmission fluctuation spectrometry 374 (1)
7.6 Theory for concentration determination 374 (4)
with the x-ray gravitational sedimentation
technique
7.6.1 X-ray sedimentation 375 (3)
7.7 Relationship between density gradient and 378 (1)
concentration
7.8 Hydrometers and divers 379 (5)
7.8.1 Introduction 379 (1)
7.8.2 Theory 380 (1)
7.8.3 Depth of immersion 381 (2)
7.8.4 Experimental procedure 383 (1)
7.8.5 Divers 384 (1)
7.9 Homogeneous cumulative gravitational 384 (3)
sedimentation
7.9.1 Introduction 384 (1)
7.9.2 Theory 384 (2)
7.9.3 Sedimentation balances 386 (1)
7.9.4 Sedimentation columns 387 (1)
7.10 Line-start incremental gravitational 387 (1)
sedimentation
7.10.1 Photosedimentation 387 (1)
7.11 Line-start cumulative gravitational 388 (4)
sedimentation
7.11.1 Introduction 388 (1)
7.11.2 Methods 388 (4)
8 Centrifugal sedimentation methods of particle
size determination
8.1 Introduction 392 (2)
8.2 Stokes' equation for centrifugal 394 (1)
sedimentation
8.2.1 General theory 394 (1)
8.3 Homogeneous, incremental, centrifugal 395 (2)
sedimentation
8.3.1 General theory 395 (2)
8.4 Variable time method (r and S constant, t 397 (9)
variable)
8.4.1 General theory 397 (6)
8.4.2 The Simcar pipette disc centrifuge (r 403 (1)
constant, S assumed constant, t variable)
8.4.3 Worked example 404 (2)
8.4.4 The Ladal x-ray disc centrifuge(r 406 (1)
constant, S constant, t variable)
8.4.5 Discussion of the Kamack equation 406 (1)
8.5 Variable time and height method (S 406 (4)
constant, both r and t vary)
8.5.1 Stokes diameter determination 406 (1)
8.5.2 Mass frequency undersize determination 407 (1)
8.5.3 DuPont/Brookhaven scanning x-ray disc 407 (1)
centrifugal sedimentometer
8.5.4 Worked example 408 (2)
8.6. Variable inner radius (Both S and t 410 (7)
vary, r remains constant)
8.6.1 Stokes diameter determination 410 (2)
8.6.2 Ladal pipette disc centrifuge 412 (1)
8.6.3 Worked example 413 (2)
8.6.4 Mass frequency undersize determination 415 (2)
8.7 Photocentrifuges 417 (5)
8.7.1 Introduction 417 (1)
8.7.2 Disc photocentrifuges. 418 (1)
8.7.3 Homogeneous mode 419 (3)
8.8 Line-start incremental centrifugal 422 (7)
sedimentation
8.8.1 Line-start, incremental centrifugal 422 (3)
technique
8.8.2 Discussion of line-start theory 425 (3)
8.8.3 BI-DCP disc (photo)centrifuge 428 (1)
particle size analyzer
8.9 Cuvette photocentrifuges 429 (2)
8.10 Homogeneous, cumulative, centrifugal 431 (2)
sedimentation
8.10.1 General theory 431 (2)
8.11 Variable time method (variation of P 433 (1)
with t)
8.12 Sedimentation distance small compared 434 (1)
with distance from centrifuge axis
8.12.1 Hosokawa Mikropul Sedimentputer 434 (1)
8.12.2 Alpine long-arm centrifuge 435 (1)
8.13 Variable inner radius (variation of P 435 (3)
with S)
8.13.1 Alternative theory (variation of P 437 (1)
with S)
8.14 Variable outer radius (variation of P 438 (1)
with R)
8.15 Line-start cumulative centrifugal 439 (1)
sedimentation
8.15.1 MSA analyzer 439 (1)
8.16 Particle size analysis using 439 (1)
non-invasive dielectric sensors
8.17 Supercentrifuge 440 (2)
8.18 Ultracentrifuge 442 (1)
8.19 Conclusions 442 (5)
9 Stream scanning methods of particle size
measurement
9.1 Introduction 447 (2)
9.2 The electrical sensing zone method (the 449 (18)
Coulter principle)
9.2.1 Introduction 449 (1)
9.2.2 Operating principle 450 (2)
9.2.3 Theory for the electrical sensing 452 (3)
zone method
9.2.4 Effect of particle shape and 455 (2)
orientation
9.2.5 Pulse shape 457 (2)
9.2.6 Effect of coincidence 459 (1)
9.2.7 Multiple aperture method for powders 460 (1)
having a wide size range
9.2.8 Calibration 461 (2)
9.2.9 Carrying out a mass balance 463 (1)
9.2.10 Oversize counts on a mass basis 464 (1)
using the Courter Counter
9.2.11 Apparatus 465 (1)
9.2.12 Limitations of the method 466 (1)
9.3 Fiber length analysis 467 (1)
9.4 Optical particle counters 468 (6)
9.4.1 Light blockage 469 (1)
9.4.2 Optical disdrometer 470 (1)
9.4.3 Light scattering 470 (4)
9.5 Commercial instruments 474 (18)
9.5.1 Aerometrics 474 (1)
9.5.2 Canty Vision 474 (1)
9.5.3 Climet 474 (1)
9.5.4 Contamination Control Systems 475 (1)
9.5.5 Danfoss VisionSensor 476 (1)
9.5.6 Faley Status 476 (1)
9.5.7 Flowvision 476 (1)
9.5.8 Galai 477 (1)
9.5.9 Kane May 478 (1)
9.5.10 Kowa 478 (1)
9.5.11 Kratel 478 (1)
9.5.12 Malvern 479 (1)
9.5.13 Pacific Scientific Hiac/Royco, Met 480 (4)
One
9.5.14 Particle Measuring Systems 484 (2)
9.5.15 Partikel Messetechnik 486 (1)
9.5.16 Particle Sizing Systems 486 (2)
9.5.11 Polytec 488 (1)
9.5.18 Rion 488 (1)
9.5.19 Spectrex 489 (3)
9.6 Dwell time 492 (5)
9.6.1 Brinkmann 201 analyzer 492 (1)
9.6.2 Focused Beam Reflectance Measurement 493 (3)
(FBRM) Lasentec
9.6.3 Messetechnik Optical Reflectance 496 (1)
Method (ORM)
9.6.4 Procedyne 497 (1)
9.7 Aerodynamic time-of-flight measurement 497 (4)
9.7.1 Thermo Systems Incorporated 497 (3)
9.7.2 Ancillary equipment 500 (1)
9.8 Laser Doppler velocimetry (LDV) 501 (1)
9.9 Laser phase Doppler principle 501 (4)
9.9.1 TSI Aerometrics phase Doppler 502 (1)
particle analyzer
9.9.2 Discusion 502 (1)
9.9.3 Differential phase-Doppler anemometry 503 (1)
9.9.4 Bristol Industrial Research 504 (1)
Association
9.9.5 Dantec Particle Dynamic Analyzer 504 (1)
9.10 Hosokawa Mikropul E-Spart Analyzer 505 (1)
9.11 Shadow Doppler velocimetry 506 (1)
9.12 Other light scattering methods 507 (1)
9.13 Interferometers 508 (2)
9.13.1 Mach Zehnder type interferometer 508 (1)
9.13.2 The TSI LiquitrakTM interferometer 509 (1)
9.14 Flow ultramicroscope. 510 (1)
9.14.1 ISPA image analysis system 510 (1)
9.15 Measurement of the size distribution of 510 (2)
drops in dispersions
9.16 Dupont electrolytic grain size analyzer 512 (1)
9.17 Light pressure drift velocity 512 (1)
9.18 Impact size monitor 513 (1)
9.19 Monitek acoustic particle monitors 513 (1)
9.20 Erdco Acoustical Counter 514 (10)
10 Field scanning methods of particle size
measurement
10.1 Introduction 524 (1)
10.2 Single point analyzers 525 (6)
10.2.1 Static noise measurement 525 (1)
10.2.2 Ultrasonic attenuation 526 (1)
10.2.3 3-ray attenuation 527 (1)
10.2.4 X-ray attenuation and fluorescence 527 (1)
10.2.5 Counter-flow classifiers 527 (1)
10.2.6 Hydrocyclones 528 (1)
10.2.7 The Cyclosensor 528 (1)
10.2.8 Automatic sieving machines 529 (1)
10.2.9 Gas flow permeametry 530 (1)
10.2.10 Correlation techniques 531 (1)
10.3 Light scattering and attenuation 531 (8)
10.3.1 Introduction 531 (1)
10.3.2 Effect of extinction coefficient on 532 (3)
turbidity
10.3.3 Transient turbidity 535 (1)
10.3.4 Holography 536 (1)
10.3.5 State of.polarization of the 537 (1)
scattered radiation
10.3.6 Forward/backward intensity ratio 538 (1)
(FBR)
10.3.7 Optical back-scattering 539 (1)
10.3.8 Transmission fluctuation spectroscopy 539 (1)
10.4 Light scattering theory 539 (5)
10.4.1 The Rayleigh region (dX) 539 (3)
10.4.2 The Rayleigh-Gans region (D less
than k) 540
10.4.3 High order Tyndall spectra (HOTS) 542 (1)
10.4.4 Light deffraction 543 (1)
10.4.5 Early commercial light scattering 543 (1)
equipment
10.5 Multi angle laser light scattering; 544 (24)
(MALLS)
10.5.1 Theoretical basis for MALLS 547 (5)
instruments
10.5.2 Commercial instruments 552 (11)
10.5.3 Discussion 563 (5)
10.6 Malvern (Insitec) Ensemhle Particle 568 (4)
Concentration Size (EPCS) Systems
10.7 Optical incoherent space frequency 572 (2)
analysis
10.7.1 Retsch Crystalsizer 573 (1)
10.8 Pulse displacement technique (PDT) 574 (1)
10.9 Small angle x-ray scattering (SAXS) 575 (1)
10.10 Near infra-red spectroscopy (NIR) 576 (1)
10.11 Ultrasonic attenuation 576 (8)
10.11.1 Introduction 576 (1)
10.11.2 Theoretical basis for ultrasonic 576 (5)
instruments
10.11.3 Discussion 581 (3)
10.12 Matec Acoustosizer (ACS) 584 (1)
10.13 Ultrasonic attenuation and velocity 584 (2)
spectrometry
10.14 Photon correlation spectroscopy (PCS) 586 (17)
10.14.1 Introduction 586 (1)
10.14.2 Principles 587 (1)
10.14.3 Through dynamic light scattering 588 (1)
10.14.4 Particle size 589 (1)
10.14.5 Concentration effects 590 (1)
10.14.6 Particle interaction 590 (1)
10.14.7 Particle size effects 591 (1)
10.14.8 Polydispersity 591 (2)
10.14.9 The controlled reference method 593 (1)
10.14.10 Multi-angle measurements 594 (2)
10.14.11 Commercial equipment 596 (5)
10.14.12 Discussion 601 (1)
10.14.13 Spectral turbidity 602 (1)
10.14.14 Diffusion wave spectroscopy (DWS) 603 (1)
10.14.15 Photon migration 603 (1)
10.15 Turbo-Power Model TPO-400 in-line grain 603 (1)
size analyzer
10.16 Concentration monitors 603 (1)
10.17 Shape discrimination 604 (1)
10.18 Miscellaneous 604 (19)
10.18.1 Back-scatter intensity 604 (1)
l0.18.2 Spectroscopy; photo-acoustic (PAS) 605 (1)
and photo-thermal (PTS)
10.18.3 Transient electric birefringence 605 (1)
10.18.4 Crossed lasers 606 (1)
10.18.5 Frequency domain photon migration 606 (1)
10.18.6 Laser induced incandescence (LII) 607 (1)
10.18.7 Spectral transmission and extinction 607 (1)
10.18.8 Turbiscan multiple light scattering 608 (15)
measurements
Appendix Manufacturers and suppliers 623 (5)
Author index 628 (25)
Subject index 653