Energetic Materials : Decompostion, Crystal and Molecular Properties (Theoretical and Computational Chemistry) 〈12〉

電子版価格 ¥43,084
  • 電書あり
  • ポイントキャンペーン

Energetic Materials : Decompostion, Crystal and Molecular Properties (Theoretical and Computational Chemistry) 〈12〉

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Hardcover:ハードカバー版/ページ数 485 p.
  • 言語 ENG
  • 商品コード 9780444515186
  • DDC分類 662.2

Table of Contents

Part 1 Overview of Research in Energetic
Materials
B.M. Rice 1 (4)
Chapter 1. A Survey of the Thermal Stability of 5 (44)
Energetic Materials
J.C. Oxley
1. Introduction 5 (2)
2. Nitrate Esters 7 (4)
3. Nitroarenes 11 (3)
4. Nitroalkanes 14 (2)
5. Nitramines 16 (3)
6. New Energetic Materials 19 (8)
6.1 New Nitrogen Heterocycles 20 (6)
6.2 NF2 Compounds 26 (1)
7. Energetic Salts 27 (3)
8. Summary of Thermal Stability and our 30 (19)
Approach
Chapter 2. Characterisation of Explosive 49 (12)
Materials Using Molecular Dynamics Simulations
P. Capkova, M. Pospisil, P. Vavra and S. Zeman
1. Introduction 49 (1)
2. Strategy of Molecular Dynamics 50 (3)
Simulations
3. Results and Discussion 53 (6)
3.1 Decomposition of RDX and beta;-HMX 54 (2)
3.2 Decomposition of DADNE and NQ 56 (1)
3.3 Parameters characterizing the 57 (2)
decomposition process
4. Conclusions 59 (2)
Chapter 3. Nitro Haci-nitro Tautomerism in 61 (30)
High-Energetic Nitro Compounds
P.V. Bharatam and K. Lammertsma
1. Nitro Haci-nitro tautomerism 61 (2)
2. Nitromethane Haci-nitromethane 63
tautomerism
3. Tautomerism in Substituted Nitroetyenes 9 (63)
4. Tautomerism in Nitroaromatic Compounds 72 (5)
5. Tautomerism in NTO, HMX, RDX and 77 (14)
5-Nitro-1 H-Tetrazole
Chapter 4. Decomposition Mechanism of 91 (20)
1,1-Diamino Dinitroethylene (FOX-1): An
Overview of the Quantum Chemical Calculation
A. Gindulyte, L. Massa, L. Huang and J. Karle
1. Introduction 92 (3)
2. Nitroethylene Computational Details 95 (1)
3. Nitroethylene Results 96 (1)
4. DADNE Computational Details 97 (1)
5. DADNE Results and Discussion 98 (6)
5.1 Initial Step of DADNE Decomposition 99 (2)
5.2 Isonitrile, 3 101(1)
5.3 Hydrogen Atom Migration from NH2 to 102(1)
NO2
5.4 HONG Elimination 102(1)
5.5 CO Elimination 103(1)
5.6 NH2 Radical Elimination 103(1)
5.7 Final tages of DADNE Decomposition 103(1)
6. Additional Check on the Accuracy of DFT 104(1)
Calculations
7. Concluding Remarks 104(7)
Chapter 5. Quantum-chemical Dynamics with the 111(14)
Slater-Roothaan Method
B.I. Dunlap
1. Introduction 111(3)
2. Robust and Variational Fitting 114(2)
3. The Slater-Roothaan Method 116(3)
4. Symmetry and Balanced DFT Dynamics 119(2)
5. 2-D Chemical Dynamics 121(1)
6. Conclusion 122(3)
Chapter 6. Molecular Dynamics Simulations of 125(60)
Energetic Materials
D.C. Sorescu, B.M. Rice, and D.L. Thompson
1. Introduction 125(3)
2. The General Method of Molecular Dynamics 128(3)
Simulations
3. Molecular Dynamics Studies of Energetic 131(57)
Materials
3.1 Gas-Phase Reactions of Energetic 131(15)
Materials
3.1.1 RDX: Initial Decomposition 132(7)
Reactions
3.1.2 HMX: Initial Decomposition 139(1)
Reactions
3.1.3 DMNA: A Prototypical Nitramine 140(2)
3.1.4 Nitromethane Decomposition 142(2)
3.1.5 Methylene Nitramine Decomposition 144(2)
3.2 Non-reactive Models 146(74)
3.2.1 Non-reactive Models 146(20)
3.2.2 Reactive Models 166(7)
3.2.3 First Principles Simulations 173(12)
Models
Chapter 7. Structure and Density Predictions 185(30)
for Energetic Materials
J.R. Holden, Z. Du and H.L. Ammon
1. The Development of MOLPAK (MOLecular 188(8)
PAcKing)
2. Examples of Coordination Sphere Building 196(1)
Procedures
3. MOLPAK Overview and Structure Prediction 197(14)
4. Summary and Challenges 211(4)
Chapter 8. X-ray Crystallography - Beyond 215(32)
Structure in Energetic Materials
A.A. Pinkerton, E.A. Zhurova and Y.-S. Chen
1. Introduction 215(1)
2. Experimental Protocol 216(2)
3. Data Reduction 218(2)
4. Data Analysis 220(4)
4.1 Structure Model - Spherical Atom 220(1)
4.2 Structure Model - Atom Centered 221(3)
Multipole Model
5. Refinements 224(1)
6. Electron Density Distributions 225(3)
6.1 Residuals 225(1)
6.2 Deformation Densities 225(3)
6.3 Laplacian of the Electron Density 228(1)
7. Topological Analysis 228(7)
7.1 Atomic Charges 232(1)
7.2 Bond Critical Point Properties 232(3)
8. Properties 235(6)
8.1 Electrostatic Potential 235(1)
8.2 Energy Density Distribution 236(1)
8.3 Energy Density Critical Points 237(3)
8.4 Hydrogen Bonding 240(1)
9. Conclusion 241(6)
Chapter 9. Computational Approaches to Heats of 247(32)
Formation
P. Politzer, P. Lane and M.C. Concha
1. Introduction 247(1)
2. Specific Approaches to DELTA; Hf 248(4)
3. Computational Methodologies 252(6)
3.1 Ab Initio 252(1)
3.2 Density Functional 253(3)
3.3 Ab Initio/Empirical and Density 256(2)
Functional/Empirical Combinations
4. Liquid and Solid Phase Heats of Formation 258(1)
5. Applications and Discussion 259(12)
5.1 Boron and Aluminum Combustion Products 259(1)
5.2 H/C/N/O/F Energetic Compounds 260(11)
6. Summary and Conclusions 271(8)
Chapter 10. Thermodynamics and Mechanical 279(48)
Properties of HMX from Atomistic Simulations
D. Bedrov, G.D. Smith, and T.D. Sewell
1. Introduction 279(2)
2. Force Field 281(11)
2.1 General Philosophy 281(1)
2.2 Quantum Chemistry 282(6)
2.3 Force Field Parametrization and 288(4)
Validation
3. Simulations of Liquid HMX 292(10)
3.1 Viscosity and Self-diffusion 292(6)
Coefficient
3.2 Thermal Conductivity 298(4)
4. Crystalline HMX 302(18)
4.1 Structural Properties 302(4)
4.2 Enthalpy of Sublimation, 306(1)
4.3 Hydrostatic Compression 307(9)
4.4 Anisotropic Elasticity 316(4)
5. Conclusions 320(7)
Chapter 11. Optical absorption in PETN and RDX 327(14)
W.F. Perger
1. Background 327(1)
2. The Approach 328(4)
2.1 Optical Absorption and the Use of 328(3)
Crystal Program
2.2 Computational Procedure 331(1)
3. Results for PETN and RDX 332(6)
3.1 PETN 333(1)
3.2 RDX 333(5)
4. Conclusions and Future Work 338(3)
Chapter 12. Interactions of Model Organic 341(48)
Species and Explosives with Clay Minerals
A. Michalkova, L. Gorb and J. Leszczynski
1. Introduction 341(5)
1.1 Interactions of Energetic Materials 343(3)
with Soils
2. Computational Methods 346(2)
3. Interactions of Clay Minerals with Water 348(8)
Molecules
3.1 Experimental Study 349(2)
3.2 Theoretical Study 351(4)
3.3 Summary 355(1)
4. Interactions of Clay Minerals with Small 356(10)
Organic Molecules
4.1 Experimental Study 356(2)
4.1.1 D-FA and D-MFA Systems 357(1)
4.1.2 K-DMSO System 357(1)
4.2 Theoretical Study 358(7)
4.2.1 D-FA and D-MFA Systems 359(4)
4.2.2 K-DMSO System 363(2)
4.3 Summary 365(1)
5. Interactions of Clay Minerals with 366(15)
Energetic Materials
5.1 Experimental Study 366(6)
5.1.1 Summary 371(1)
5.2 Theoretical Study 372(20)
5.2.1 Interaction of 372(5)
1,3,5-Trinitrobenzene with Nonhydrated
Surface of Clay Minerals
5.2.2 Interaction of 377(3)
1,3,5-Trinitrobenzene with Hydrated
Surface of Clay Minerals
5.2.3 Summary 380(1)
6. General Conclusions and Future Research 381(8)
Area
Chapter 13. Chemistry and Applications of 389(16)
Dinitramides
P. Sjoberg
1. History 389(1)
2. Synthetic Methods 390(2)
3. Chemistry and Properties 392(6)
3.1 Reactivity 393(1)
3.2 Physical Properties 393(1)
3.3 Chemical Stability and Compatibility 393(3)
3.4 Sensitivity 396(2)
4. Applications 398(3)
4.1 Propulsion 398(1)
4.2 Explosive Compositions 399(2)
4.2.1 Phase-stabilizer in Ammonium 400(1)
Nitrate (AN)
4.2.2 Liquid Monopropellant 400(1)
4.2.3 Automotive Safety 401(1)
5. Improvement of ADN 401(4)
5.1 Stabilization of ADN 401(1)
5.2 Handling Properties 402(3)
Chapter 14. Polynitrogens as Promising 405(16)
High-Energy Density Materials: Computational
Design
O. Kwon and M.L. McKee
1. Introduction 405(2)
2. Known Computational Facts of 407(7)
Polynitrogens
2.1 Computational Methodology 408(1)
2.2 N4 409(1)
2.3 N5 410(1)
2.4 N6 411(1)
2.5 N7 411(1)
2.6 N8 412(1)
2.7 N9, N10, N11 and N12 412(1)
2.8 Larger polynitrogens 413(1)
3. Nitrogen-rich Compounds, EN 414(2)
4. Conclusions 416(5)
Chapter 15. Electronic Structure Calculations 421(20)
as a Tool in the Quest for Experimental
Verification of N4
T. Brinck, M. Bittererova and H. Ostmark
1. Introduction 421(1)
2. Energetics 422(7)
2.1 N4 Singlet Potential Energy Surface 422(3)
2.2 N4 Triplet Potential Energy Surface 425(4)
3. Synthesis 429(4)
3.1 Excited State N2 Reactions 429(1)
3.2 Nitrogen Atom Reactions 430(3)
4. Detection 433(4)
4.1 IR and Raman Spectroscopy 433(2)
4.2 LIF Spectroscopy 435(2)
5. Summary 437(4)
Chapter 16. Changing the Properties of N5+ and 441
N5- by Substitution
S. Fau and R.J. Bartlett
1. Introduction 441(2)
2. Computational Methods 443(1)
3. Results 444(7)
3.1 CHN4 444(1)
3.2 N4P+ and N3P2 445(3)
3.3 CN30+ 448(2)
3.4 Derivatives of N5- 450(1)
4. Summary and Conclusions 451(6)
Index for Parts 1 and 2 457
Part 2 Overview of Research in Energetic
Materials
B.M. Rice 1 (4)
Chapter 1. Sensitivity Correlations 5 (20)
P. Politzer and J.S. Murray
1. Introduction 5 (2)
2. Background 7 (1)
3. Sensitivity Correlations 8 (2)
4. TATS: A Case Study 10 (2)
5. Electrostatic Potential 12 (6)
6. Summary 18 (7)
Chapter 2. A Study of Chemical Micro-Mechanisms 25 (28)
of Initiation of Organic Polynitro Compounds
S. Zeman
1. Introduction 25 (2)
2. Data Sources 27 (8)
2.1 Impact Sensitivity Data 27 (1)
2.2 Electric Spark Sensitivity Data 27 (1)
2.3 Detonation Velocity 27 (1)
2.4 NMR Chemical Shifts 27 (8)
3. Basic Mechanisms of Thermal 35 (1)
Decomposition of Organic Polynitro and
Polynitroso Compounds
4. Initiation of Polynitro Compounds 36 (10)
4.1 Chemical Micro-Mechanism of 36 (4)
Initiation by Impact
4.2 Chemical Micro-Mechanism of 40 (3)
Initiation of Detonation
4.3 Chemical Micro-Mechanism of 43 (2)
Initiation by Electric Shock
4.4 Chemical Micro-Mechanism of Fission 45 (1)
of Polynitro Compounds by Action of Heat
and its Relation to Detonation
5. Conclusions 46 (7)
Chapter 3. Dynamics of Energy Disposal in 53 (18)
Unimolecular Reactions
C. Stopera and M. Page
1. Chemical Issues in the Initiation of 54 (1)
Detonations
2. The Key Role of Unimolecular Reactions 54 (2)
3. Quantum Chemistry Provides Potential 56 (1)
Energy Surface
4. Computing the Reaction Path 57 (4)
5. The Reaction Hamiltonian 61 (3)
6. Methylene Nitramine Decomposition 64 (4)
7. Concluding Remarks 68 (3)
Chapter 4. Initiation and Decomposition 71 (30)
Mechanisms of Energetic Materials
M.R. Manaa
1. Introduction 71 (1)
2. Initiation Models 72 (1)
3. Nonradiative Energy Transfer in 73 (2)
Nitromethane
4. Effects of Pressure and Vacancies 75 (12)
4.1.1 Uniform Compression 75 (2)
4.1.2 Uniaxial Compression 77 (2)
4.1.3 C-H High Stretch Under Uniaxial 79 (2)
Compression
4.2 Effect of Molecular Vacancies 81 (5)
4.2.1 Uniform Compression 83 (2)
4.2.2 Uniaxial Compression 85 (1)
4.3 Summary 86 (1)
5. Decomposition of HMX 87 (14)
5.1 Computational Model 90 (1)
5.2 Kinetics of HMX Decomposition 91 (5)
5.3 Summary 96 (5)
Chapter 5. Initiation due to Plastic 101(24)
Deformation from Shock or Impact
C.S. Coffey
1. Introduction 101(2)
2. AFM and STM Observations of the 103(5)
Microscopic Processes of Plastic Deformation
2.1 Micro-Indentations 104(1)
2.2 Shock Response of Heavily Confined 105(1)
Crystals
2.3 Impact Observations 106(1)
2.4 Extreme Plastic Flow 106(1)
2.5 Comparison with Gold 107(1)
2.6 Summary of Experimental Observations 107(1)
3. Theoretical Developments, 108(5)
3.1 The Deformed Lattice Potential 108(1)
3.2 Plastic Flow and Energy Dissipation 109(2)
3.3 Dislocation Tunneling, Particle Size 111(1)
Effects and Shear Band Formation
3.4 Summary of Theoretical Results 112(1)
4. Calculations 113(7)
4.1 Anomalous Plastic Deformation in 113(1)
Impacted RDX
4.2 Estimation of Shear Band Temperatures 114(1)
4.3 Yield Stress and Particle Size 115(1)
4.4 Approximate Energy Dissipation Rate 116(2)
and P2 DELTA;t Initiation Threshold
4.5 Initiation by Non-Planar Shock Waves 118(1)
4.6 Initiation of Detonation 119(1)
5. Conclusions 120(5)
Chapter 6. Fast Molecular Processes in 125(68)
Energetic Materials
D.D. Dlott
1. Introduction 125(1)
2. The Phenomenology of Energetic Materials 126(17)
2.1 Types of Energetic Materials 127(1)
2.2 Shock Waves 127(8)
2.2.1 Shock Waves in Continuous Elastic 128(4)
Media
2.2.2 Shock Fronts in Real Materials 132(3)
2.3 Detonations 135(2)
2.4 Low Velocity Initiation 137(2)
2.5 Shock Initiation 139(2)
2.6 Sensitivity 141(2)
3. Molecular Level Structure of Energetic 143(10)
Materials
3.1 How Chemical Bonds are Broken 143(1)
3.2 Band Structure of Molecular Solids 144(3)
3.3 Molecular Crystals under Dynamic 147(4)
Shock Compression
3.3.1 Shock-induced Electronic 147(1)
Excitations
3.3.2 Shock-induced Mechanical 148(2)
Excitations
3.3.3 Dynamic Picture of Shock 150(1)
Excitation
3.4 Shock Compression of Nanometric 151(2)
Energetic Materials
4. Up-pumping, Sensitivity and Ignition 153(15)
4.1 Nitromethane Shock Initiation and the 154(2)
Induction Time
4.2 Doorway Vibrations in Up-pumping 156(4)
4.3 Up-pumping Calculations, Simulations 160(3)
and Sensitivity
4.4 Up-pumping and Anharmonic Defects 163(1)
4.5 Up-pumping and Thermal Conductivity 163(2)
4.6 Coherent Pumping of Vibrations 165(3)
5. Hot Spot Formation in Porous Materials 168(4)
6. Molecular Response in Detonation 172(3)
7. Fast Processes in Nanometric Energetic 175(4)
Materials
8. Concluding Remarks 179(14)
Chapter 7. The Equation of State and Chemistry 193(32)
of Detonation Products
L.E. Fried, W.M. Howard, and J.M. Zaug
1. Introduction 193(5)
2. Computational Method 198(2)
3. Fluid Equations of State 200(7)
4. Condensed Equations of State 207(2)
5. Application to Detonation 209(1)
6. Experimental 210(3)
7. Results and Discussion 213(8)
8. Conclusions 221(4)
Chapter 8. Combustion Mechanisms and 225(70)
Simplified-Kinetics Modeling of Homogeneous
Energetic Solids
M.Q. Brewster
1. Introduction 226(1)
2. Mathematical Model of Macroscopically 227(22)
Steady Combustion
2.1 Condensed Phase Model 228(6)
2.1.1 Governing Equations 228(3)
2.1.2 Solution of Condensed Phase 231(3)
Equations
2.2 Gas Phase Model 234(9)
2.2.1 Governing Equations 234(5)
2.2.2 Solution of Gas Phase Equations 239(4)
2.3 Complete Model--Gas and Condensed 243(6)
Phases
2.3.1 High Gas Activation Energy 244(1)
Solution (Intermediate Pressures)
2.3.2 Low Gas Activation Energy 244(1)
Solution (Intermediate Pressures)
2.3.3 High and Low Pressure Regimes 244(1)
(Condensed Phase Controlled Burning)
2.3.4 Sensitivity Parameters 245(4)
3. Results for Macroscopically Steady 249(24)
Combustion
3.1 Parametric (Non-Dimensional) Results 249(9)
for Benchmark Case
3.1.1 Burning Rate or Mass Flux 250(2)
3.1.2 Surface Temperature, Heat 252(3)
Feedback, and Flame Standoff Distance
3.1.3 Sensitivity Parameters 255(3)
3.2 Results for Common Materials 258(15)
3.2.1 NC/NG Double Base Propellant 259(9)
3.2.2 HMX 268(5)
3.3 Summary of Steady-State Results 273(1)
4. Quasi-Steady Theory of Unsteady Condition 273(5)
4.1 Non-Linear Formulation 274(2)
4.2 Linear Formulation 276(2)
5. Results for Quasi-Steady, Oscillatory 278(10)
Combustion
5.1 Parametric (Non-Dimensional) Results 278(7)
for Benchmark Case
5.2 Results for Common Materials 285(13)
5.2.1 NC/NG Double Base Propellant 286(1)
5.2.2 HMX 286(2)
6. Intrinsic Stability 288(2)
7. Concluding Remarks 290(5)
Chapter 9. Modeling of Nitramine Propellant 295(56)
Combustion and Ignition
E.S. Kim, R. Yang and V. Yang
1. Introduction 297
1.1 Modeling Development of Steady-State 298(1)
Combustion of Nitramine Propellants
1.2 Modeling Development of Ignition of 299(1)
Nitramine Propellants
1.3 Modeling Development of Combustion of 300(2)
Nitramine/GAP Pseudo-Propellants
2. Theoretical Formulation 302(12)
2.1 Steady-State Combustion of RDX 302(1)
Monopropellant
2.2 Laser-Induced Ignition of RDX 303(2)
Monopropellant
2.3 Steady-State Combustion of 305(1)
Nitramine/GAP Pseudo-Propellants
2.4 Conservation Equations 306(9)
2.4.1 Gas-Phase Processes 306(1)
2.4.2 Gas-Phase Chemical Kinetics 307(1)
2.4.3 Subsurface Two-Phase Processes 308(1)
2.4.4 Subsurface Chemical Kinetics and 309(2)
Phase Transition
2.4.5 Solid-Phase Processes 311(1)
2.4.6 Radiative Heat Transfer 311(2)
2.4.7 Boundary Conditions 313(1)
3. Numerical Method 314(1)
4. Discussion of Model Results 315(31)
4.1 Steady-State Combustion of Nitramine 316(6)
Propellants
4.2 Laser-Induced Ignition of RDX 322(10)
Monopropellant
4.3 Steady-State Combustion of HMX/GAP 332(19)
and RDX/GAP Pseudo-Propellants
4.3.1 HMX/GAP Pseudo-Propellant 332(8)
4.3.2 RDX/GAP Pseudo-Propellant 340(6)
5. Concluding Remarks 346(5)
Chapter 10. Use of Kinetic Models for Solid 351(22)
State Reactions in Combustion Simulations
J. Wang and C.A. Wight
1. Introduction 351(5)
1.1 Steady Combustion Models vs. Unsteady 352(1)
Combustion Models
1.2 Surface Reaction Kinetics 353(3)
2. Model 356(4)
3. Results and Discussion 360(9)
3.1 Validation of the Steady State 360(1)
Combustion with WSB Model
3.2 Ignition Time 361(1)
3.3 Pressure Sensitivity and Surface 362(2)
Temperature
3.4 Temperature Sensitivity 364(1)
3.5 Effect of Kinetic Models 365(10)
3.5.1 First-order Reaction Model 365(2)
3.5.2 Second-order Reaction Model 367(2)
4. Conclusion 369(4)
Chapter 11. Towards Reliable Prediction of 373(72)
Kinetics and Mechanisms for Elementary
Processes: Key Combustion Initiation Reactions
of Ammonium Perchlorate
R.S. Zhu and M.C. Lin
1. Introduction 374(1)
2. Computational Methods 375(4)
2.1 Ab Initio Calculations 375(2)
2.2 Rate Constant Calculations 377(2)
3. Results and Discussion 379(57)
3.1 Unimolecular Decomposition of HClO4 379(3)
and HClO3
3.2 Reactions of H and HO with HC104 382(8)
3.2.1 H + ClO4 Reaction 382(4)
3.2.2 HO + HClO4 Reaction 386(4)
3.3 Unimolecular Decomposition of ClOs (x 390(5)
= 2 - 4)
3.3.1 ClOO and OClO 390(3)
3.3.2 s-ClO03 393(1)
3.3.3 ClO4 394(1)
3.4 Bimolecular Reactions of Cl0X (x = 395(41)
1-3)
3.4.1 HO + ClO 395(5)
3.4.2 HO + OClO Reaction 400(4)
3.4.3 HO + ClO3 404(2)
3.4.4 HO2 + ClO 406(5)
3.4.5 HO2 + OClO 411(2)
3.4.6 O + ClO and its Reverse Reaction, 413(2)
Cl + O2
3.4.7 ClO + ClO 415(8)
3.4.8 ClO + OClO 423(13)
4. Concluding Remarks 436(9)
Index for Parts 1 and 2 445