Deep Learning for Multi-Sensor Earth Observation (Earth Observation)

個数:

Deep Learning for Multi-Sensor Earth Observation (Earth Observation)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 350 p.
  • 言語 ENG
  • 商品コード 9780443264849
  • DDC分類 910.285

Full Description

Deep Learning for Multi-Sensor Earth Observation addresses the need for transformative Deep Learning techniques to navigate the complexity of multi-sensor data fusion. With insights drawn from the frontiers of remote sensing technology and AI advancements, it covers the potential of fusing data of varying spatial, spectral, and temporal dimensions from both active and passive sensors. This book offers a concise, yet comprehensive, resource, addressing the challenges of data integration and uncertainty quantification from foundational concepts to advanced applications. Case studies illustrate the practicality of deep learning techniques, while cutting-edge approaches such as self-supervised learning, graph neural networks, and foundation models chart a course for future development.

Structured for clarity, the book builds upon its own concepts, leading readers through introductory explanations, sensor-specific insights, and ultimately to advanced concepts and specialized applications. By bridging the gap between theory and practice, this volume equips researchers, geoscientists, and enthusiasts with the knowledge to reshape Earth observation through the dynamic lens of deep learning.

Contents

Section 1: Introduction to Multi-Sensor Data and Artificial Intelligence
1. Deep Learning for Multisensor Earth Observation: Introductory Notes
2. A Basic Introduction to Deep Learning

Section 2: Artificial Intelligence for Sensor-specific data analysis and fusion
3. Deep learning processing of remotely sensed multispectral images
4. Deep Learning and Hyperspectral Images
5. Synthetic Aperture Radar Image Analysis in Era of Deep Learning
6. Deep Learning with Lidar for Earth Observation
7. Several Sensors and Modalities

Section 3: Advanced Concepts and Architectures
8. Self-Supervised Learning for Multimodal Earth Observation Data
9. Vision Transformers and Multisensor Earth Observation
10. Graph Neural Networks for Multi-Sensor Earth Observation
11. Uncertainty Quantification in Deep Neural Networks for Multisensor Earth Observation

Section 4: Multi-sensor Deep Learning Applications
12. Multi-Sensor Deep Learning for Change Detection
13. Multi-Sensor Deep Learning for Glacier Mapping
14. Deep Learning in Multisensor Agriculture and Crop Management
15. Miscellaneous Applications of Deep Learning based Multisensor Earth Observation
16. Multi-Sensor Earth Observation: Outlook

最近チェックした商品