代数的位相幾何学:初歩コース<br>Algebraic Topology : A First Course (Graduate Texts in Mathematics) 〈Vol. 153〉

個数:
  • ポイントキャンペーン

代数的位相幾何学:初歩コース
Algebraic Topology : A First Course (Graduate Texts in Mathematics) 〈Vol. 153〉

  • ウェブストア価格 ¥10,267(本体¥9,334)
  • Springer Verlag(1995/09発売)
  • 外貨定価 US$ 49.95
  • 【ウェブストア限定】サマー!ポイント5倍キャンペーン 対象商品(~7/21)※店舗受取は対象外
  • ポイント 465pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9780387943275
  • DDC分類 514.2

Full Description

To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re­ lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ­ ential topology, etc.), we concentrate our attention on concrete prob­ lems in low dimensions, introducing only as much algebraic machin­ ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol­ ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel­ opment of the subject. What would we like a student to know after a first course in to­ pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under­ standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind­ ing numbers and degrees of mappings, fixed-point theorems; appli­ cations such as the Jordan curve theorem, invariance of domain; in­ dices of vector fields and Euler characteristics; fundamental groups

Contents

I Calculus in the Plane.- 1 Path Integrals.- 2 Angles and Deformations.- II Winding Numbers.- 3 The Winding Number.- 4 Applications of Winding Numbers.- III Cohomology and Homology, I.- 5 De Rham Cohomology and the Jordan Curve Theorem.- 6 Homology.- IV Vector Fields.- 7 Indices of Vector Fields.- 8 Vector Fields on Surfaces.- V Cohomology and Homology, II.- 9 Holes and Integrals.- 10 Mayer—Vietoris.- VI Covering Spaces and Fundamental Groups, I.- 11 Covering Spaces.- 12 The Fundamental Group.- VII Covering Spaces and Fundamental Groups, II.- 13 The Fundamental Group and Covering Spaces.- 14 The Van Kampen Theorem.- VIII Cohomology and Homology, III.- 15 Cohomology.- 16 Variations.- IX Topology of Surfaces.- 17 The Topology of Surfaces.- 18 Cohomology on Surfaces.- X Riemann Surfaces.- 19 Riemann Surfaces.- 20 Riemann Surfaces and Algebraic Curves.- 21 The Riemann—Roch Theorem.- XI Higher Dimensions.- 22 Toward Higher Dimensions.- 23 Higher Homology.- 24 Duality.- Appendices.- Appendix A Point Set Topology.- A1. Some Basic Notions in Topology.- A2. Connected Components.- A3. Patching.- A4. Lebesgue Lemma.- Appendix B Analysis.- B1. Results from Plane Calculus.- B2. Partition of Unity.- Appendix C Algebra.- C1. Linear Algebra.- C2. Groups; Free Abelian Groups.- C3. Polynomials; Gauss's Lemma.- Appendix D On Surfaces.- D1. Vector Fields on Plane Domains.- D2. Charts and Vector Fields.- D3. Differential Forms on a Surface.- Appendix E Proof of Borsuk's Theorem.- Hints and Answers.- References.- Index of Symbols.

最近チェックした商品