Metaheuristic Computation with MATLAB®

個数:
  • ポイントキャンペーン

Metaheuristic Computation with MATLAB®

  • ウェブストア価格 ¥13,480(本体¥12,255)
  • Chapman & Hall/CRC(2022/05発売)
  • 外貨定価 US$ 62.99
  • 読書週間 ポイント2倍キャンペーン 対象商品(~11/9)
  • ポイント 244pt
  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 280 p.
  • 言語 ENG
  • 商品コード 9780367523800
  • DDC分類 519.6

Full Description

Metaheuristic algorithms are considered as generic optimization tools that can solve very complex problems characterized by having very large search spaces. Metaheuristic methods reduce the effective size of the search space through the use of effective search strategies.

Book Features:




Provides a unified view of the most popular metaheuristic methods currently in use



Includes the necessary concepts to enable readers to implement and modify already known metaheuristic methods to solve problems



Covers design aspects and implementation in MATLAB®



Contains numerous examples of problems and solutions that demonstrate the power of these methods of optimization

The material has been written from a teaching perspective and, for this reason, this book is primarily intended for undergraduate and postgraduate students of artificial intelligence, metaheuristic methods, and/or evolutionary computation. The objective is to bridge the gap between metaheuristic techniques and complex optimization problems that profit from the convenient properties of metaheuristic approaches. Therefore, engineer practitioners who are not familiar with metaheuristic computation will appreciate that the techniques discussed are beyond simple theoretical tools, since they have been adapted to solve significant problems that commonly arise in such areas.

Contents

Preface. Acknowledgments. Authors. Chapter 1 Introduction and Main Concepts. Chapter 2 Genetic Algorithms (GA). Chapter 3 Evolutionary Strategies (ES). Chapter 4 Moth-Flame Optimization (MFO) Algorithm. Chapter 5 Differential Evolution (DE). Chapter 6 Particle Swarm Optimization (PSO) Algorithm. Chapter 7 Artificial Bee Colony (ABC) Algorithm. Chapter 8 Cuckoo Search (CS) Algorithm. Chapter 9 Metaheuristic Multimodal Optimization. Index.

最近チェックした商品