An Introduction to Classical Electromagnetic Radiation

  • ポイントキャンペーン

An Introduction to Classical Electromagnetic Radiation

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Hardcover:ハードカバー版/ページ数 653 p.
  • 言語 ENG
  • 商品コード 9780521580939
  • DDC分類 539.2

基本説明

Textbook.

Table of Contents

Preface                                            xi
1 Basic theory of classical electromagnetism 1 (122)
1.1 Historical introduction: Maxwell's 1 (24)
equations in integral form
1.2 Curl and divergence: Maxwell's 25 (9)
equations in differential form
1.3 Surface densities, boundary 34 (14)
conditions, and perfect conductors
1.3.1 Surface densities of charge and 35 (6)
current
1.3.2 Electromagnetic boundary conditions 41 (6)
1.3.3 The concept of a perfect conductor 47 (1)
1.4 Energy of the electromagnetic field - 48 (17)
Poynting's theorem
1.5 Electromagnetic boundary value problem 65 (6)
- uniqueness theorem
1.6 Numerical solution of Maxwell's 71 (17)
equations using finite differences: An
example
1.7 Harmonic time dependence and the 88 (16)
Fourier transform
1.7.1 Linear systems 88 (4)
1.7.2 Maxwell's equations 92 (2)
1.7.3 Poynting's theorem 94 (4)
1.7.4 Uniqueness theorem 98 (3)
1.7.5 Fourier transform 101(3)
References 104(3)
Problems 107(16)
2 Electromagnetic plane waves in free space: 123(54)
Polarized waves
2.1 General time dependence 123(5)
2.2 Harmonic time dependence: 128(6)
Monochromatic plane waves
2.3 The polarization ellipse in the 134(6)
coordinate system of the principal axes
2.4 The Poincare sphere and the Stokes 140(2)
parameters
2.5 Optical elements for processing 142(11)
polarized light
2.6 Transmission and reception of 153(8)
polarized waves with antennas
2.7 Historical note: The experiments of 161(7)
Hertz
References 168(1)
Problems 169(8)
3 Inhomogeneous plane waves and the 177(85)
plane-wave spectrum
3.1 Inhomogeneous plane waves 177(4)
3.2 Two-dimensional, transverse electric 181(3)
and transverse magnetic fields
3.3 Plane-wave spectrum for 184(8)
two-dimensional electromagnetic fields
3.4 The uniformly illuminated slit 192(7)
3.5 Asymptotic or radiated field - the 199(8)
method of stationary phase
3.6 Plane-wave spectrum for 207(11)
three-dimensional electromagnetic fields
3.6.1 General formulation 207(3)
3.6.2 Asymptotic or radiated field 210(5)
3.6.3 Wavefronts and rays 215(3)
3.7 Examples of three-dimensional fields 218(32)
3.7.1 Uniformly illuminated circular 218(14)
aperture
3.7.2 Circular aperture with tapered 232(8)
illumination - reflector antennas
3.7.3 Gaussian beam - paraxial 240(10)
approximation
References 250(1)
Problems 251(11)
4 Electromagnetic analogues of some optical 262(58)
principles
4.1 Huygens' principle: An alternate 262(11)
representation
4.1.1 General formulation 264(4)
4.1.2 Radiated field 268(4)
4.1.3 Discussion 272(1)
4.2 Fresnel zones 273(4)
4.3 The scattered field 277(4)
4.4 Babinet's principle 281(5)
4.4.1 Optical formulation 281(2)
4.4.2 Electromagnetic formulation 283(3)
4.5 Transmission coefficients and 286(8)
scattering cross sections
4.6 Complementary antennas 294(5)
4.7 Images 299(6)
4.8 General time dependence 305(4)
4.9 Discussion 309(2)
References 311(2)
Problems 313(7)
5 Radiation from distributions of charge and 320(38)
current: General formulation
5.1 Electromagnetic potentials 320(11)
5.1.1 Electrostatics 321(1)
5.1.2 Magnetostatics 322(3)
5.1.3 Electrodynamics 325(6)
5.2 Dirac delta function - concept of a 331(10)
point charge
5.2.1 One-dimensional delta function 332(3)
5.2.2 Three-dimensional delta function 335(2)
5.2.3 Electrostatic point charge 337(4)
5.3 Retarded potentials and electromagnetic 341(6)
field
5.4 Radiated field 347(5)
5.5 Harmonic time dependence 352(3)
References 355(1)
Problems 356(2)
6 Electromagnetic field of a moving point 358(93)
charge
6.1 Derivation 358(17)
6.1.1 Lienard-Wiechert potentials 359(5)
6.1.2 Electromagnetic field 364(7)
6.1.3 Radiated power 371(4)
6.2 Special cases 375(21)
6.2.1 Low velocity: v/c less than 1 377(1)
6.2.2 Relativistic velocity, a parallel 378(16)
to v
6.2.3 Relativistic velocity, a 394(2)
perpendicular to v
6.3 Synchrotron radiation 396(15)
6.4 Cherenkov radiation 411(25)
6.5 Self force 436(5)
References 441(4)
Problems 446(5)
7 Dipole radiation 451(95)
7.1 Infinitesimal electric dipole or 452(17)
current element
7.1.1 General time dependence 452(13)
7.1.2 Harmonic time dependence 465(4)
7.2 Electrically short linear antennas 469(8)
7.3 Duality and the infinitesimal magnetic 477(5)
dipole or current loop
7.4 Electrically small loop antennas 482(3)
7.5 Simple arrays of electrically short 485(21)
linear antennas
7.5.1 General time dependence 486(7)
7.5.2 Harmonic time dependence 493(13)
7.6 Scattering by electrically small 506(15)
objects
7.7 The color and polarization of skylight 521(16)
7.7.1 Natural light 524(4)
7.7.2 Molecular scattering 528(9)
References 537(4)
Problems 541(5)
8 Radiation from thin-wire antennas 546(62)
8.1 Charge and current: Physical arguments 547(9)
8.2 Basic traveling-wave element; dipole 556(11)
antennas
8.2.1 Description of element 556(6)
8.2.2 Dipole antennas 562(5)
8.3 Traveling-wave bends and loops 567(8)
8.3.1 Simple bend 567(3)
8.3.2 Circular loop 570(5)
8.4 Other traveling-wave antennas 575(8)
8.4.1 Dipole antenna with continuous 575(4)
resistive loading
8.4.2 Insulated linear antenna 579(4)
8.5 Harmonic time dependence; examples 583(18)
8.5.1 Basic traveling-wave element 584(4)
8.5.2 Long-wire antennas 588(3)
8.5.3 Standing-wave dipole 591(5)
8.5.4 Resonance and the half-wave dipole 596(5)
8.6 Perspective 601(1)
References 602(2)
Problems 604(4)
Appendix A Units and dimensions 608(9)
References 616(1)
Appendix B Review of vector analysis 617(21)
References 635(1)
Problems 636(2)
Supplemental references 638(5)
Index 643